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Abstract. Clustering streaming sensors is the task of clustering stream-
ing data series produced by sensors on a wide sensor network. Consider-
ing the dynamic behavior usually enclosed in streaming data, clustering
streaming sensors should be addressed as an online and incremental pro-
cedure, in order to enable faster adaptation to new concepts and produce
better models through time. However, centralized clustering strategies
tend to be inapplicable as usual techniques have quadratic complexity
on the number of sensors, and sensor networks grow unbounded. Thus,
distributed clustering techniques which operate on sensor networks must
be developed. In this paper we try to clarify why clustering of stream-
ing sensors should be addressed in a distributed fashion, its requirements
and their implications for future developments. We also propose a general
setup for this procedure and illustrate it with a toy example.
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1 Introduction

Data flows continuously from streams at high speed, producing examples over
time, which would make a traditional data gathering process create databases
with tendentiously infinite length. Traditional database management systems
are not designed to directly support the continuous queries required by these
applications. Also, data gathering and analysis have become ubiquitous, in the
sense that our world is evolving into a setting where all devices, as small as
they may be, will be able to include sensing and processing ability. Thus, if
data is to be gathered centrally, this scenario also points out to databases with
tendentiously infinite width. The application of streaming procedures to central-
ized databases becomes nearly inapplicable, since usual clustering strategies have
quadratic complexity in the number of variables [17]. New distributed techniques
must be defined to deal with this new ubiquitous streaming setting. Clustering
streaming sensors is the task of clustering streaming data series produced by



sensors on a wide sensor network. In this paper we address the research area of
developing distributed algorithms to solve this problem. The main idea behind
this task is the following: some (or all) of the sensors enclosed in the network
should perform some kind of processing over the data gathered by themselves
or/and by their neighbors, in order to achieve an up-to-date clustering structure
definition of the entire sensor network.

1.1 Sensor Data and Networks

Sensors are usually small, low-cost devices capable of sensing some attribute of
a physical phenomenon. These devices are most of the times interconnected in a
distributed network which, due to the ubiquitous setting, creates new obstacles
to the common data mining tasks. Most works on clustering analysis for sensor
networks actually concentrate on clustering the sensors by their geographical
position and connectivity, mainly for power management and network routing
purposes [5]. However, in this work, we are interested in clustering techniques
for data produced by the sensors, instead.

In terms of hardware development, the state-of-the-art in sensors is well
represented by a class of multi-purpose sensor nodes called motes [7], which
were originally developed at UC Berkeley and are being deployed and tested by
several research groups and start-up companies. In most of the current applica-
tions [7], the sensor nodes are controlled by module-based operating systems such
as TinyOS [1] and are programmed using arguably somewhat ad-hoc languages
such as nesC [11]. Sensor networks are composed of a variable number of sensors
(depending on the application), which have several features that put them in an
entirely new class when compared to other wireless networks, namely: (a) the
number of nodes is potentially very large and thus scalability is a problem, (b)
the individual sensors are prone to failure given the often challenging conditions
they experiment in the field, (c) the network topology changes dynamically, (d)
broadcast protocols are used to route messages in the network, (e) limited power,
computational, and memory capacity, and (f) lack of global identifiers [2]. Sensor
network applications are, for the most part, data-centric in that they focus on
gathering data about some attribute of a physical phenomenon. Routing can be
based on the data-centric approach. Two main approaches are used: (a) sensors
broadcast advertisements for the availability of the data and wait for interested
nodes, or; (b) sinks broadcast interest in the data and wait for replies from
the sensors. The queries for data are usually done using attribute-based naming,
that is, using the attributes of the phenomenon being measured. The data is
usually returned in the form of streams of simple data types without any local
processing.

2 Connections with Previous Research

The main question is how can a distributed system develop and learn the global
clustering structure of streaming sensors data, even though communication be-
tween sensors is limited (and even nonexistent in some extent). The handicap



on processing streams is the impossibility of total knowledge of each series data.
One suitable solution to this problem are approximate algorithms. The handicap
is reinforced in ubiquitous settings as, for a given processing unit, total knowl-
edge of the complete set of sensors’ data is also improbable. Hence, approximate
algorithms must be considered in this direction also.

2.1 Clustering Streaming Time Series

Clustering streaming time series has been already targeted by researchers in
order to cope with the tendentiously infinite amount of data produced at high
speed. Beringer and Hiillermeier proposed an online version of k-means for clus-
tering parallel data streams, using a Discrete Fourier Transform approximation
of the original data [3]. The basic idea is that the cluster centers computed at
a given time are the initial cluster centers for the next iteration of k-means,
applying a procedure to dynamically update the optimal number of clusters at
each iteration. Clustering On Demand (COD) is another framework for cluster-
ing streaming series which performs one data scan for online statistics collection
and has compact multi-resolution approximations, designed to address the time
and the space constraints in a data stream environment [8]. It is divided in
two phases: a first online maintenance phase providing an efficient algorithm
to maintain summary hierarchies of the data streams and retrieve approxima-
tions of the sub-streams; and an offline clustering phase to define clustering
structures of multiple streams with adaptive window sizes. Rodrigues et al. [18],
proposed the Online Divisive-Agglomerative Clustering (ODAC) system, a hi-
erarchical procedure which dynamically expands and contracts clusters based
on their diameters. It constructs a tree-like hierarchy of clusters of streams, us-
ing a top-down strategy based on the correlation between streams. The system
also possesses an agglomerative phase to enhance a dynamic behavior capable
of structural change detection. The splitting and agglomerative operators are
based on the diameters of existing clusters and supported by a significance level
given by the Hoeffding bound [12]. However, if data is produced by sensors on a
wide network, the proposed algorithms tend to deal with them as a centralized
multivariate stream.

2.2 Distributed Clustering

Although few works were directly targeted at data clustering on sensor net-
works, some distributed techniques are obvious starters of this area of research.
Distributed implementations of well-known algorithms may produce both valu-
able and impractical systems, so the path to them should be carefully inspected.
Sensors’ characteristics imply resource restrictions which narrow the possibilities
for high-load computation while operating under a limited bandwidth. Resource-
Aware Clustering [9] was already proposed as a stream clustering algorithm for
example clustering that can adapt to the changing availability of different re-
sources. However, although sensor networks usually operate with limited band-
width, due to energy restrictions, the amount of data produced by these networks



can become unbounded due to the large number of sensors and their fast sensing
abilities. This can turn out to be an important bottleneck and force some nodes
to spend more energy on relaying information to the sink [16]. The key objective
of sensor data processing is to maintain information incrementally, in such a
way that the system can cope with high-speed production of data. Data stream
mining on sensor networks needs to operate under a limited bandwidth, reduc-
ing the capability to represent and transmit the data mining models over the
network [14], which creates an even thicker barrier to an efficient handling of the
continuous flow of data. Furthermore, the detection and reaction to changes in
the clustering structure must be adapted to the new distributed setting. While it
may seem straightforward to adapt previously developed techniques [18], there is
another change that must be monitored, with even more control: network topol-
ogy changes. The network topology can be highly volatile, evolving with time
due to, for example, sensor movement, broken links or sensor failures. On top
of all these issues, the deployment of moving sensors is an emergent technique,
used in numerous applications. In these contexts, requirements for distributed
clustering systems become extreme.

On one side, the data clustering structure could be defined locally, possi-
bly restricted by the network topology, in order to confine communications to
nearby sensors. Afterwards, these local structures would be combined by top-
level processing units to define a global clustering structure, as cluster ensem-
bles [20] techniques would operate. On the other hand, sensors could be able
to define representative data or summary information that would be used by
any top-level process to define a single clustering structure, even if roughly ap-
proximated. Kargupta et al. presented a collective principal component analysis
(PCA), and its application to distributed example cluster analysis [13]. However,
these techniques still consider a centralized process to define the clusters, which
could become overloaded if sensors were required to react to the definition of
clusters, forcing the server to communicate with all sensors. Given the extent
of common sensor networks, the old client-server model is essentially useless to
help the process of clustering data streams produced on sensors.

3 Issues on Clustering Streaming Sensors

Common sensor networks data aggregation techniques are based on the Eu-
clidean distance (physical proximity) of sensors to perform summaries on a given
neighborhood [5]. However, the clustering structure definition of the series of
data produced by the sensors is orthogonal to the physical topology of the net-
work, as stressed in the example presented in Figure 1. Considering the main
restrictions of sensor networks, the analysis of clusters of multiple sensor streams
should comply not only with the requirements for clustering multiple streaming
series [17], but also with the available resources and setting of the corresponding
sensor network. New techniques to efficiently perform clustering of streaming
sensors should be developed in distributed fashions, as massive sensor networks
produce high levels of data processing and transmission, reducing the ability to
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Fig. 1. Example of a mote sensor network (left) and a possible clustering definition of
the series produced by each sensor (right). This example shows the orthogonality that
is expected to exist between network topology and the sensors’ data structure.

feedback the information to the system. We foresee advantages in this distributed
approach: local processing reduces dimensionality of clustering techniques, while
implying less communication to the server; exploiting relations between sensed
data clusters and actual geographical clusters can provide deeper understand-
ing of the network dynamics; faster answers, sensitive information preservation,
easier deployment, possibility of self-organization and better adaptability. These
are strong features for applications where centralized versions are inapplicable.

3.1 Increased Privacy Preservation

The privacy of personal data is most of the times important to preserve, even
when the objective is to analyze and compare with other people’s data. Anonymiza-
tion is the most common procedure to ensure this but experience as shown that
it is not flawless. This way, centralizing all information in a common data server
could represent a more vulnerable setup for security breaches. If we can achieve
the same goal without centralizing the information, privacy should be easier to
preserve. Furthermore, the system could achieve a global clustering structure
without sharing sensible information between all nodes in the network.

3.2 Sensor Network Message Forwarding

One of the highest resources consuming tasks in sensor networks is communi-
cation. For example, a network of wireless integrated network sensors (WINS)
has to support large numbers of sensors in a local area with short range and
low average bit-rate communication [16]. If a distributed clustering procedure
is applied at each forwarding node, usual data aggregation techniques could be
data-centric, in the sense that one node could decide not to transmit a message,
or aggregate it with others, if it contains information which is quite similar to
other nodes’.

3.3 Sensor Network Deployment Quality

When sensor networks are deployed in objective areas, the design of this deploy-
ment is most of the times subject to expert-based analysis or template-based



configuration. Unfortunately, the best deployment configuration is sometimes
hard to find. Applying distributed clustering of sensors’ data streams the sys-
tem can identify sensors with similar reading profiles, while investigating if the
sensors are in the same geographical cluster. If similar sensors, with respect to
the produced data, are place in a dense, with respect to the geographical posi-
tion, cluster of sensors, resources are being spoiled as less sensors would give the
same information. These sensors could then be assigned to different positions in
the network.

3.4 Domains of Application

Sensor networks are nowadays used in various applications for sensing, process-
ing and monitoring physical measures or activities. Clustering the sensors by the
data they produce can present specific advantages for some of them. In electricity
supply systems, the identification of demand profiles (ex: industrial or urban) by
clustering streaming sensors’ data decreases the computational cost of predict-
ing each individual sub-network load [10]. As thousands of sensors are naturally
distributed in the electrical network, distributed procedures which would focus
on local networks could prevent the dimensionality drawback. Also, a common
problem in geoscience research is the monitoring of natural phenomena evolu-
tion. Sensor nodes can be densely deployed either very close or directly inside
the phenomenon to be observed [21]. Clustering the data produced by different
sensors is helpful to identify areas with similar profiles, possibly indicating actual
water or wind streams. The Global Positioning System (GPS) is commonly used
to monitor location, speed and direction of both people and objects. Identifying
similar paths, for example, in delivery teams or traffic flow, is a relevant task to
current enterprises and end-users [15]. However, the amount of data produced
by each GPS receiver is so huge, and the allowed reply delay so narrow, that
performing centralized clustering of GPS tracks is too expensive to perform.
Finally, clustering medical sensor data (such as ECG, EEG, etc.) is useful to
determine association between signals [19], allowing better diagnosis. Detecting
similar profiles in these measures among different patients is one way to ex-
plore uncommon conditions. Mobile and embedded devices could interconnect
different patients and physicians, without revealing sensitive information from
patients while nevertheless achieving the goal of identifying similar profiles.

4 Distributed Clustering of Streaming Sensors

The main objective of a clustering system should be to be able to answer queries
for the global clustering definition of the entire sensor network. If sensors are dis-
tributed on a wide area, with local sites being accessible from transient devices,
queries could be issued at each local site, enabling fast answers to be sent to the
querying device. However, current setups assume data is forwarded into a central
server, where it is processed, being this server the main answering device. This
setup forces not only the data but also the queries to be transmitted across the
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Fig. 2. Toy example of a sensor network, where each sensor s produces a stream X ~
N (us,0.5), link connections are represented by edges and vertex labels on the left plot
indicate each sensor’s concept (us), while vertex labels on the right plot indicate a
possible mean and standard deviation of actual data produced in such a conceptual
network.
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network into a sink. In this section we propose a general setup for distributed
clustering of streaming sensors, taking into account the requirements and advan-
tages previously enunciated. First, we should be able to have some type of sketch
of the stream being produced by each sensor, in order to reduce the computation
of similarities between sensors. Then, we believe each sensor should communi-
cate only locally with its neighbors, in order to reduce the amount of data being
forwarded throughout the network. Finally, we must include mechanisms to pre-
vent redundant communication, while monitoring for structural changes in the
clustering definition of the entire network. Throughout the entire section we will
use a toy example to illustrate our proposal. Figure 2 presents that example of a
sensor network, where each sensor s produces a stream of data X ~ N(us,0.5),
with edges representing link connections and where vertex labels are the ps. In
this toy example, we are only looking for a definition of K cluster centers, with
K = 2 previously known by the system, assuming dissimilarity between sensors
is computed by the distance between the means of each sensor. Although this
simple example lacks some of the common characteristics of real-world scenarios,
its extension is straightforward. Nevertheless, a sound definition and evaluation
of a complete system is ongoing and should be presented in future work.

4.1 Sketching Streaming Sensors

Each sensor produces a stream of data, usually defined by one or more infinite
time series. In the following, we consider that each sensor produces a single
stream of data. As previously stated, we want to define a clustering structure
for the sensors, where sensors producing streams which are alike are clustered
together. Hence, we shall define a similarity measure for such streams. However,
we do not ever have access to the complete time series, and we would like to



prevent the whole data to be transmitted in the network. We should consider
approximate metrics, using simple sufficient statistics of the streams, or data
synopsis, to achieve similar results. One way to summarize a data stream X is
by computing its sample mean Z; and standard deviation s;, assuming some kind
of data distribution. This simple strategy, although extremely naive, is sufficient
for our toy example, where we assume the dissimilarity between sensors to be the
distance between their sample means. As we can see in Figure 2, and although
in several real-world scenarios that is not true, we should assume the sample
mean of each sensor to be non-correlated with its physical location. Each sensor
produces data continuously. Given this, each sensor s is responsible to keep its
own estimate of the sample mean [i; in a online fashion. In this small example
we will consider that, at each new example !, arriving at time ¢, each sensor’s
estimate is updated by doing

ﬂi = ﬂiil(l = Au) + xi)‘u (1)

where A\, € [0, 1] is the update coefficient for the online computation of the sensor
mean (a simply incremental version would consider A\, = %) More complex
strategies could include distribution distances based on the histograms of each
sensor’s data (e.g. relative entropy [4]), where each sensor would have to transmit
the frequency of each data interval to its neighbors, or using approximations of
the original data [3]. Overall, we should consider techniques that project each
sensor’s data stream into a reduced set of dimensions which suffice to extract
similarity with other sensors. These estimates can be seen as the sensor’s current
overview of its own data, giving an indication of where in the data-space this
sensor is included.

4.2 Local Approximations of the Global Clustering Definition

As each sensor s is able to sketch its own data in a dimensionally-reduced def-
inition, it is also able to interact with its neighbor nodes 7y, in order to assess
a local clustering of sensors. In our example, the distance between two sensors
s; and s; can be defined as d;; = |fi; — fi;]. Overall, each sensor should include
incremental clustering techniques which operate with distance metrics developed
for the dimensionally-reduced sketches of the data streams. Our goal is to have
at each local site a global clustering structure of the entire sensor network. To
achieve this, at each time ¢, each sensor s should send to its neighbors 7, its
own estimate of the global clustering C?, instead of sendind only its own sketch
fit. Note that with this approach, each sensor keeps an approximate estimate of
the global cluster centers C. This estimate can be seen as the sensor’s current
overview of the entire network which, together with its own sketch, gives an
indication of where in the entire network data-space this sensor is included.

At a given point in time ¢, a given sensor s receives estimates of the global
cluster centers which were gathered by their neighbors: P! = {C}! | i € ns}.
The idea behind this step is to aggregate all the locally defined centers and
apply a clustering procedure on these centers, considering them as points for



the final clustering. This way, C!~1 are defined as initial centers for the iterative
clustering procedure. Merging clustering definitions is a known technique which
as been argued to give good results [6]. However, given the streaming setting
where sensor networks usually operate, these procedures must also be executed
online. If no information is sent by neighbors, sensor s would have an almost
static view of the global network clustering. The only update that is possible in
this scenario is to incrementally update the clustering estimate Cy with current
sensor’s sketch. This would be supported by two steps: defining to which cluster
center ¢; € Cs sensor s is assigned, j = argmin;c gy gy d(ci, 4t); and updating
¢;j using simple techniques such as ¢!, = 0;71(1 = Xe) + it A, where A, € [0,1] is
the update coefficient for the online adjustment of the cluster center. This way,
next time this sensor transmits its estimate of the global clustering structure, it
is already updated with its most recent sketch.

4.3 Communication Management

Communication is one of the most resource-consuming procedures of sensor net-
works [5]. If a central server is used to aggregate all data, each individual sketch
must be forward through the network into a sink node. To enable each local site
to have the global clustering structure of the entire network, the central server
would have to reply with K values, largely increasing the global number of trans-
missions. If we transmit data only between neighbors, this would represent 2F
communications of K values, where F is the number of links in the network,
achieving an approximate clustering of the whole network at each node, with
much less communication. On top of this, if the concept of the data being pro-
duced in the network is stable, then the clustering estimates will converge, and
transmissions will become redundant. We should include mechanisms to allow
each sensor to decide to which neighbors it is still valuable to send information.
In our toy example, sensor s should transmit its estimate Cs to sensor a € 7,
ifft D(Cs,C,) > 7, where D is the Euclidean distance between ordered centers
and 7 is a suitably defined (possibly adaptive) threshold. However, the world is
not static. It is possible that, with time, the sketches of each sensor will change,
adapting to new concepts of data. On a long run, the communication manage-
ment strategy could prevent the system from adapting to new data. Overall,
sensors should include change detection mechanisms that would trigger if the
data changes, either univariatedly at each sensor, or in the global interaction of
sensor data.

4.4 Results on Toy Example

In order to see how the previous techniques would apply to a given problem,
we used the scenario presented in Figure 2 and generated 20 different sets of
streams of data accordingly. Each sensor’s sketch is maintained as in Equation 1
with A, = 1/t and communication is allowed after 10 examples (to stabilize the
sample means) as described in Section 4.2, using a step of k-means as incremental



Fig. 3. Results of one run of the toy scenario. Plot shows the cluster centers estimates
after 1 iteration (left) and 150 iterations (right). The local update of global clustering
definition allows all nodes to achieve an acceptable result.

clustering of gathered centers. First, each sensor s sends its own sketch to all
neighbors 7, and computes the first cluster centers using a iteration over its
neighbors’ sketches. The following communications are each sensor’s estimate
of the hereby gathered global clustering centers. After 150 points, results are
evaluated. Since we are forcing the concept to be stable, the system also stabilizes
quite rapidly. We compare each local estimate with the real centers gathered
using each sensor’s real i, in terms of Euclidean distance of the ordered centers.
The objective (correct) cluster centers are C' = (6.9,98.0). Over all runs, the
median average deviance from the actual centers was D = 0.205 for a centralized
online k-means on the whole data, D = 0.663 for the proposed local system
without any transmission control and D = 0.758 for the proposed system with a
simple transmission control based on the distance between clustering definitions.

Figure 3 presents the resulting definition for one run, after 150 iterations,
deviating from the actual centers by D = 0.71 + 0.23, using an average of 17
transmissions of 2 values per iteration. Although at first cluster centers estimates
at each sensor are highly biased towards local data, the exchange of information
between sensors allows the system to reduce the error very rapidly, so that, after
only few iterations, the system is already stable. We should note that, without
restricting transmission, the resulting structure is a bit better (D = 0.66 +0.26)
performing exactly 26 transmissions of 2 values per iteration. To have an idea
about the quality of this results, a centralized online k-means clustering on all
data would end-up with D = 0.31. The main idea is to have an estimate of
the centers in all sensors. Considering the possible size of sensor networks, we
believe that these techniques, although approximate, are much more feasible
than centralizing all information. The path will start from here finding better
analysis and procedures to achieve good results in real-world sensor networks,
with tight error bounds.



5 Future Developments

Although the physical topology of the network may be useful for data manage-
ment purposes, the main focus should be on finding similar sensors irrespec-
tively to their physical location. Also, minimizing different resources (mainly
energy) consumption is a major requirement in order to achieve high uptimes
for sensors. On top of this, a compact representation of both the data and the
generated models must be considered, enabling fast and efficient transmission
and access from mobile and embedded devices. Even though processing may be
concentrated on local computations and short-range communication, the final
goal is to infer a global clustering structure of all relevant sensors. Hence, ap-
proximate algorithms should be considered to prevent global data transmission.
Given this, when querying a given sensor for the global clustering, we allow (and
known beforehand that we will have) an approximate result within a maximum
possible error with a certain probability. Each approximation step (local sketch,
local clustering update, merging different cluster definitions, etc.) should be re-
stricted by some stability bound on the error [12]. These bounds should serve
as balancing deciders in the trade-off between transmission management and re-
sulting errors. In this paper we have shown how the task of clustering streaming
sensors differs from previously studied traditional tasks in its neighborhood. We
have tried to clarify to what extent the previous approaches are not suitable for
the new task of clustering streaming sensors, pointing out the main restrictions
implied by sensor networks characteristics. A general setup is proposed for dis-
tributed clustering of streaming sensors, and a toy example is used to illustrate
the procedure. Future work will focus on clear algorithms for real-world appli-
cations of sensor networks, and their strict evaluation on ubiquitous scenarios.
A first step is being already done using online histograms as sketching process,
and distance between distributions as dissimilarity measure among sensors.
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