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Abstract. Modelling efforts aiming at predicting traffic flows accurately,
should be capable of handling a continuous stream of data while be-
ing able to account for structural changes. To this end, the current re-
search proposes three regression tree induction algorithms, including a
batch, incremental and hybrid batch/incremental technique. These algo-
rithms are discussed, implemented and evaluated based on their pre-
dictive power and computational requirements. The incremental and
batch/incremental algorithms prove to be particularly suited as on-line
learning approaches, whereas the batch algorithm needs to be adapted
in order to handle a continuous stream of data. The outcomes of the
batch/incremental and batch algorithms are comparable and these algo-
rithms also prove to forecast traffic flows better than a selected baseline
model. Additionally, the incremental and batch/incremental approaches
show to consume considerably less memory capacity and computational
time compared to the adapted batch algorithm.
Key words: regression tree, on-line learning, incremental regression tree
induction, traffic flow forecasting

1 Introduction

Travel information systems, such as intelligent transportation systems (ITS) and
advanced travellers information systems (ATIS), are used to supply information
to road users. To this end, these systems need to provide a forecast of the travel
conditions at the moment the user plans to access a particular road segment.
For that purpose, travel times can be derived from the future demand on the
network and the current and future state of this network. [1] The reliability of
travel information systems is thus to a large extent determined by the accuracy
of the underlying predictions. In this area of research, a number of modelling
efforts has already been proposed. For instance, Smith and Demetsky [2] have
compared four techniques, covering historical average, time-series, neural net-
work and nonparametric regression. The current research focuses on estimating
the future number of vehicles on a selected stretch of road based on historical
data recorded in traffic counts by means of regression tree induction.

In order to accurately predict these future traffic counts per minute, the se-
lected modelling technique needs to satisfy a number of conditions. First, because



traffic sensors continuously record the number of vehicles on a specific stretch of
road, the technique considered here has to be able to handle a continuous stream

of data. In addition, the technique has to be responsive to structural changes,
such as a long-run decrease in the number of vehicles on a particular road seg-
ment as a result of a policy, for instance the introduction of a road toll to use a
particular stretch of road or the adoption of high occupancy vehicle lanes.

Within this context, the current research aims at exploring the applicabil-
ity of a decision tree induction algorithm. For this purpose, three regression
tree induction algorithms are presented, evaluated and compared based on their
compliance to the above defined conditions, predictive performance and compu-
tational requirements. The first algorithm is a batch regression tree algorithm
and the second is an incremental learning algorithm; both algorithms are intro-
duced by Potts and Sammut[3]. The third algorithm consists of a combination of
the batch and the incremental regression tree induction technique which meets
the shortcomings of both founding algorithms. Additionally, the batch regression
tree algorithm is adapted so as to enable handling an on-line data stream.

Section 2 will introduce the reader into the regression tree induction algo-
rithms considered here. Section 3 will specify the criteria used to evaluate these
approaches and discuss the data used. This section will also present the imple-
mentation and results of a case study to prove the applicability, suitability and
performance of the proposed techniques within the current research problem.
Section 4 will summarize the major findings of this study.

2 Methodology

2.1 Batch Regression Tree Algorithm

Potts and Sammut [3] have founded the regression tree induction algorithms ap-
plied here. The present paper will only provide a brief overview of this algorithm.
A more detailed description of this algorithm can be found in [3].

The batch regression tree initially consists of a root node containing all avail-
able training instances. The regression tree is then refined by recursively adding
binary splits according to a predefined splitting criterion. In the current research,
this criterion is based on the distribution of the residuals (RA) of the observa-
tions assigned to the node into consideration. These residuals are calculated by
taking the difference between the actual value and the predicted value, which
equals the average value of the dependent variable of all examples included in
the node. According to these residuals, the algorithm divides the N instances of
this node in two subsets: the N+ examples with non-negative residuals belong to
S+ and the N− examples with negative residuals belong to S− (N = N++N−).
For each dependent variable j following statistic is calculated:
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respectively and wj the pooled variance of z-vales over both subsets. Having
calculated both T -values for all attributes, the split attribute is defined to be
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Additionally, the probability α where |t| > T is retrieved from the Student’s

t distribution and compared to a predefined threshold to check whether the
proposed split is meaningful. Moreover, the growth of the tree is limited by esti-
mating the contribution of the split to the overall tree accuracy by calculating:
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Where RSS is the residual sum of squares and d is the number of dimensions.
This value is also put against a predefined threshold.

Yet, the current configuration of the algorithm is fitted off-line, which implies
that the algorithm is not able of handling a continuous stream of data. Therefore,
the regression tree induced by means of the batch regression tree algorithm has
to be re-estimated from time to time, based on the available data. However, the
number of instances rises rapidly, causing both the amount of memory required
to store the training instances and the time needed to estimate the regression tree
to increase. Consequently, aiming at reducing memory requirements and speed-
ing up the regression tree induction, only a fixed number of the most recently
encountered instances will be used to fit the regression tree. This process is illus-
trated in Figure 1. For instance, the regression tree is re-estimated every week
based on the data collected during the 100 preceding days. The most recently
fitted regression tree is then applied for prediction until the next re-estimation
of the regression tree.

Both parameters (frequency of re-estimation and number of training in-
stances used) need to be considered very carefully. First, re-fitting the regression
tree more frequently increases the ability to adjust for changes, but increases
the burden of updating the regression tree. Next, using more data to train the
regression tree increases the accuracy and enables the regression tree to level
out temporary fluctuations. However, including training instances generated a
long time ago restrict the responsiveness of the algorithm to structural changes



Fig. 1. Adjustment of the batch regression tree algorithm

because the information recorded by these ’old’ instances may be outdated and
could thus interfere with the prediction of recent trends. This issue can also be
tackled by decreasing the importance of older instances by assigning weights to
the instances based on their age.

However, both the memory capacity needed to store a large amount of in-
stances and the computational time needed to estimate a regression tree grow as
the number of instances increases. In the current research, two combinations of
these parameters will be evaluated. To obtain the on-line batch regression tree
induction algorithm described above, the regression tree is re-fitted every week
based on data of the 100 preceding days (on-line 100d, every 7d) and based on
data of the 365 preceding days (on-line 365d, every 7d).

The adjustment of the batch regression tree induction algorithm includes one
major disadvantage: the computational time required to fit the batch regression
tree is needed each time the regression tree is re-estimated forcing the total
computational time to rise considerably as will be illustrated in section 3.4.

2.2 Incremental Regression Tree Algorithm

The drawbacks of the batch induction algorithms described in the previous para-
graph can also be tackled by applying either an on-line regression tree induction



algorithm [3] or a hybrid form combining the batch regression tree algorithm
with an incremental one.

The main idea behind the incremental learning process is similar to the batch
regression tree approach discussed in the previous paragraph. In essence, these
algorithms differ in the fact that the incremental algorithm starts with an empty
tree and updates the regression tree on each encounter with a new instance. To
this end, the incremental approach first updates the statistics within each node
of the regression tree that is affected by the training instance into consideration.
If necessary, the algorithm can alter the existing tree by either creating an ad-
ditional split or pruning a number of existing leaves. [3] The latter action allows
the algorithm to correct previously defined splits which are no longer signifi-
cant based on the most recently observed instances. Subsequently, the training
instance can be discarded. As a result, it is not required to store the training in-
stances encountered during the learning process. Consequently, the incremental
approach allows saving memory space.

In addition to this advantage, an intrinsic feature of the incremental algo-
rithm consists of the ability of handling a continuous stream of data without
having to re-train the regression tree from scratch when a new instance becomes
available. However, the gradual updating of the regression tree implies that the
sequence in which the training instances are processed, influences the structure
of the regression tree to a large extent. This causes the incremental regression
tree to reveal a different structure compared to the batch regression tree based on
the same dataset, but drawn up examining a large number of training instances
at once.

2.3 Batch/Incremental Regression Tree Algorithm

The authors also propose a hybrid batch/incremental regression tree induction
method combining both algorithms, which allows merging the advantages of
both approaches. To start with, the batch regression tree induction algorithm
is applied to fit a regression tree based on n available instances at a certain
moment in time. In the present research, all instances collected during the first
365 days are used to estimate the initial regression tree. Thereafter, the resulting
regression tree is updated by applying the incremental induction algorithm when
a new instance enters the system. This approach allows formulating an initial
regression tree, which already captures the most significant splits deduced from
the data available for the batch algorithm. The existence of such structure fa-
cilitates the updating process within the incremental learning process. Because
of this, it is assumed that the batch/incremental algorithm will perform better
than the incremental approach.

As is the case for the incremental approach, the batch/incremental algorithm
discards the training instances after the initial batch training and the subse-
quent updating of the regression tree. The major advantage of this true on-line
approach with regard to the adjusted batch algorithm includes the reduced re-
quirements for memory capacity, next to a decrease in the computational time



needed to update the trees compared to the time needed to fit the regression
tree from scratch.

3 Case Study

3.1 Evaluation Criteria

First, to prove the applicability of these algorithms within the research area, the
three regression tree induction approaches are evaluated against a number of
requirements. As already mentioned in the introduction, the techniques proposed
here need to be able to handle a continuous stream of data and be responsive to
structural changes within the data.

Next, the performance of the algorithms is assessed and compared. To this
end, the regression trees are used to obtain traffic count forecasts, which are
compared to the corresponding observed values. In case of the batch regression
tree re-fitted every d days based on the n preceding days, the forecasts are
generated as follows: to start with, the regression tree is fitted based on data of
the first n days. Then, the regression tree is applied to estimate traffic counts
per minute of the following d days, until the regression tree needs to be re-fitted.
Subsequently, this new regression tree is used to predict traffic counts per minute
of the next d days, until the regression tree is re-fitted again.

In case of the incremental regression tree algorithm, the regression tree is
updated every minute, immediately after the traffic count becomes available
within the system. The continuously updated regression tree can thus be applied
every minute to generate the predicted traffic count for the following minute.
However, in the current case study is assumed that the forecast is needed for
a stretch of road which will be reached ten minutes in the future. This implies
that the traffic count predictions per minute are based on all data available up
to ten minutes before the time slot into consideration.

Furthermore, in case of the batch/incremental regression tree algorithm, the
regression tree is fitted off-line first and updated on-line thereafter, as is the
case for the incremental algorithm. From that time, the batch/incremental re-
gression tree provides traffic count estimates per minute in the same way as the
incremental algorithm, also taking into consideration a prediction horizon of ten
minutes in the future.

In order to be able to assess the performance of the algorithms, a baseline
model is defined. This model also takes into account a prediction horizon of ten
minutes: at time t the baseline model assigns a predicted value for time t + 10,
which equals the most recently observed value up to that time. The predictive
power of the algorithms is put against the predictions of the baseline model
based on the sum of the squared errors of the predicted value compared to the
actual value (SSE) and the average relative error (ARE), which is calculated by
dividing the absolute difference of the observed count and the estimate by the
observed value.

Moreover, because the amount of time required to estimate or update the
regression tree determines the applicability of the algorithm within this domain,



the computational time of the algorithms are also recorded and compared. To
this end, the algorithms are implemented on a computer equipped with an Intel
Core Dual processor (1.80 G Hz and 1.79 G Hz) and 2.0 GB of RAM.

3.2 Data

The three algorithms described above are applied to estimate future travel
counts on one particular road segment. The data used for this case study in-
clude 1,429,933 instances and stem from traffic counts gathered by the Flemish
Traffic Control Centre (Vlaams Verkeercentrum) in the course of 2003, 2004 and
2005. Traffic cameras and loop detectors record traffic counts on approximately
600 locations scattered on an area of 13,500 km2. The road segment analysed
here compromises of two lanes, each of them monitored by means of a separate
loop detector. The dependent variable is the traffic count per time slot, which is
composed of the sum of the measurements on both lanes. The time series contains
a number of cycles: the data is subject to a daily cycle, a monthly cycle and a
(rather weak) yearly cycle. For the purpose of accounting for structural changes,
the authors expect that the proposed techniques are the most appropriate ones
for this type of problem.

In order to fit a regression tree to forecast traffic counts per minute, the
regression algorithm needs a number of independent variables. In this case study,
next to the time of the day expressed in minutes elapsed since midnight and the
weekday, three dummy variables are included, which indicate whether or not the
traffic counts were recorded on a day within a school holiday, a public holiday or
a weekday (vs. weekend day). These variables are assumed to be able to capture
the cyclic effects within the data. Furthermore, for the purpose of illustrating
the applicability of the techniques, only these variables are considered, but it
is obvious that more variables, such traffic announcements, can be taken into
consideration as well.

3.3 Structural Changes

In order to be able to test the responsiveness of the algorithm to structural
changes, the data are transformed artificially to replicate a structural change.
Suppose for instance that a policy has been implemented from January 1st,
2005, imposing a congestion charge between 6am and 10 am and 4 pm and 7
pm. It is assumed here that this policy impacts the number of vehicles on the
road segment into consideration as follows: the traffic counts per minute drop on
average by 25 percent during above defined time slots and by ten percent during
the gap in between these peak moments (10 am to 4 pm). No changes are assumed
to occur before 6 am and after 7 pm. To replicate these changes, the observed
values are multiplied by factors randomly drawn from a normal distribution
with an average of 0.75 (i.e. decrease of 25 percent) and 0.90 (i.e. decrease of
10 percent) respectively and a standard deviation of 0.025. The responsiveness
of the algorithms to structural will be examined by taking a closer look at the



structure of the resulting regression trees fitted on the data without and with
the proposed changes.

3.4 Results

Predictive Power The highlights of the results based on the data including
changes due to the policy are summarized in Table 1. First, both evaluation
criteria, average SSE and average relative error, indicate that the accuracy of the
batch algorithms and the batch/incremental algorithm lie within the same order
of magnitude, and is superior to the accuracy of the incremental approach. The
weak results of the incremental approach are due to the fact that the sequence in
which the instances are processed influence the structure of the regression tree
to a large extent. Especially in the current research, in which the data exhibits
multiple cycles, the incremental algorithm produces a different tree than the
batch and batch/incremental algorithms. After all, as the data enter the system
minute by minute, the incremental algorithm processes the daily cycle and the
weekly cycle differently than the batch component which considers all available
data at once.

Moreover, when comparing the results of the regression tree approaches to
the baseline model defined previously, the batch and the batch/incremental al-
gorithms predict better than the baseline model. Furthermore, when observing
the accuracy of the batch algorithms, one will note that the amount of training
data influences the accuracy only to a limited degree.

Next, Figure 2 shows the evolution of the cumulative relative error for the
regression trees based on the data with the changes due to introduction of the
policy. All regression tree induction algorithms start with a high average error,
but prove to converge within a considerable amount of time. Table 2 compares
the proposed algorithms based on the speed of convergence of the relative error.
In this table, the time needed to converge represents the amount of time that
the average cumulative relative error fluctuates for more than 1%. As the table
shows, the time to convergence is the highest in the case of the incremental
algorithm, which reflects the initial setup time of the incremental regression tree
algorithm. The batch algorithm estimating the regression tree on data of 100
preceding days requires the least time to converge. With respect to the height of
the average of the cumulative relative error, the batch/incremental approach and
the batch algorithm based on 365 preceding days produce the highest maximum,
whereas the incremental approach produces the smallest maximum cumulative
relative error.

Figure 3 reflects the evolution of the cumulative relative error at the time of
the introduction of a structural change into the data at January 1st, 2005. This
figure reveals that all algorithms suffer only a minor increase in the average of
the cumulative error.

Computational Requirements Bearing in mind that the analysis in the cur-
rent research provides forecasts for only one road segment, and that applications



Batch:
on-line
100d,

every 7d

Batch:
on-line
365d,

every 7d

Batch/
Incremental

Incremental

Number of times
the model is
re-estimated/
updated

143 105 914,930 1,429,933

Learning time (s)

Average 7.541 36.808
40.844 (B)
+0.000 (I)

0.000

Minimum 5.484 31.672
40.844 (B)
+0.000 (I)

0.000

Maximum 11.438 43.765
40.844 (B)
+0.016 (I)

0.046

Average SSE∗ 49.676 50.568 42.005 90.919

ARE† 32.655% 33.314% 30.040% 40.604%

∗Average SSE of baseline model is 70.301.
†Average Relative Error of baseline model is 39.082%.

Table 1. Prediction results of regression trees

using such forecasts, such as ITS and ATIS, require predictions for each road
segment, the authors would like to draw special attention to the algorithm’s
computational requirements. Firstly, with respect to the memory requirements,
for the batch algorithm the instances need to be stored and need to be processed
at the same time. To give an impression of the amount of memory that can be
saved: in case of the fitting the batch regression tree, the size of the input file
containing all instances for the road segment into consideration is more than
58MB. In case of the fitting or updating the incremental and batch/incremental
trees, each record is handled separately and can be discarded afterward. The file
containing only one record consumes less than 1kB.

Secondly, the computational times in Table 1 attract the attention. While the
times needed to update the incremental and batch/incremental regression trees
are almost negligible, the average computational time of the batch approach is
rather high. Furthermore, as these computational times are required every time
the regression tree is re-estimated, the total time needed by the batch algorithm
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Fig. 2. Evolution of the average cumulative relative error

increases rapidly. For instance, the algorithm requires approximately 1,078.363
s (= 143 x 7.541 s) in total in the case the regression tree is re-fitted every week
based on data of 100 preceding days or 3,864.840 s (= 105 x 36.808 s) in the case
the regression tree is re-estimated every week based on data of 365 preceding
days. On the contrary, the incremental approach only takes maximum 142.933 s
(= 1,429,933 x 0.0001 s) and the batch/incremental approach 132.337 s (= 40.844
s + 914,930 x 0.0001 s). Both true on-line algorithms are thus considerably faster
compared to the batch approach. In addition, the batch/incremental approach
does not lose on accuracy.

Batch:
on-line
100d,

every 7d

Batch:
on-line
365d,

every 7d

Batch/
Incremental

Incremental

Maximum height 53.490% 420.979% 420.979% 68.829%

Time needed to
converge

106,035 356,229 178,711 303,597

Table 2. Convergence of cumulative relative error
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4 Conclusions

The goal of the current research consisted of testing the applicability of a se-
lected regression tree induction algorithm to predict traffic counts per minute
on a particular road segment based on a number of explanatory variables (time
of the day, weekday and three dummy variables to mark school holidays, public
holidays and weekdays vs. weekend days). Three versions of the regression tree
induction algorithm were proposed and revised within this application: a batch,
incremental and hybrid (batch/incremental) algorithm were compared based on
their characteristics, predictive power and required computational time. In or-
der to enable processing an uninterrupted stream of data, the batch induction
approach was adapted. The incremental and batch/incremental algorithms did
not need such alterations, as the way they fit the regression tree model implies
that these algorithms are able to handle a continuous stream of data.

The results have shown that the batch/incremental and batch algorithms
performed equally well, whereas the predictive performance of the incremental
approach limps behind. Additionally, when considering the computational and
memory requirements, the batch/incremental approach has proven to be supe-
rior due to its lower total computational time and due to its reduced memory
requirements as the training instances do not need to be stored.

Moreover, the outcome of this research has also indicated that the approaches
are able to respond to structural changes which were simulated artificially within
the available data. However, further research is required to define and quantify
the ability of the algorithms to respond to structural changes.
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