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Abstract. Data acquisition in battery-powered sensor networks must be energy-
efficient. Given this objective, we study the following problem: At whickwark
node(s) should a join be computed? One alternative is centralized,tienga
location, vs. distributed. The problem with centralized approaches is that th
must consolidate the data from the entire network at the particular site. This is
expensive. Thus, we investigate when exactly the distributed alternativeres
efficient. To do so, we observe that processing the join in a distributeccoray
sists of two high-level tasks, which determine the energy consumptipmel

rive the information to find the optimal join location(s). (2) Compute theltesu
given these locations. Understanding how each of these tasks shoailg ioke
performed is not trivial: Analytic models result in non-differentiablenfiotae.
Further, the number of alternative distributions is extremely high. Weeaddr
these issues by applying statistical methods. Our contribution is to show ¢hat th
second task should not be distributed, besides exceptional casesdiRgghe

first task, we show that information beyond knowing which tuples join chas
help to optimize the processing.

1 Introduction

Wireless sensor networks proliferate in many applicatiomains, from environmental
monitoring to industrial maintenance. They typically cishsf battery-powered nodes
with constrained computation and communication capadslifTo increase the lifetime
of the network, energy-efficient mechanisms for data adtiprisare mandatory.

Our focus is on processing the join efficiently. The join is t#tlassical database
operator to express relationships and to analyze sensar dat

ExamMpPLE 1.1: A meteorologist is interested in analyzing the follounusual ob-
servation: At nearby locations there is a significant défere in atmospheric pressure.
A query that acquires the necessary sensor readings issseoren SQL using a join:

SELECT A. .+, B.=*

FROM Sensors A, Sensors B

WHERE di stance(A. x, Ay, B.x, B.y) < 100m
AND A pressure - B.pressure > 0.1lhPa

ONCE

Here, RelatiorSensor s serves as a database abstraction of the sensor network.
Every node is represented by a tuple with one attribute pesaseof that node (e.g.,



temperature, light)YONCE specifies that the query refers to the current state of the net
work ("snapshot query"), cf. Section 3. m]

Our goal is to process join queries using a minimal amountnefgy. Typically,
sensing and communication dominate the power consumpfiamnode by orders of
magnitude [1-3]. As the sensing costs are orthogonal todinealgorithm, we must
minimize the communication to process the join energy-effity [1].

More specifically, we investigate the probleahwhich nodeof the network the
join should be processed. In particular, join queries irseenetworks may join tuples
located on arbitrary nodes and may involve arbitrary joinditonsin the general case

One alternative for processing the join is centralized, aea single location. The
‘basic’ variant of a centralized join performs all the cortgiions at the base station.
Centralized approaches are however expensive: They estuiransfer each tuple to
the processing site which may be far from the nodes involueteé join. We provide a
more thorough discussion in Section 4.

In contrast, operators like projection and selection camflieiently executed by
distributing the computation [4, 5]. The idea is to procdssdata close to the sources
to reduce its volume before transmission. This gives wayh&following question:
Can distributing the join yield a more efficient processinghie general case? So far,
distributed join methods are advantageous in specific sicsnanly (cf. Section 2).

A distributed join processing must meet two requiremeraysAny pair of tuples
that join must be in the result. (b) The processing sites @y chosen so that they
are close to the data sources. Thus, distributing the jailudtes two high-level tasks:
(1) Set up: Derive the information required to process the g¢dficiently and correctly
in a distributed way. (2) Result computation: Compute ttsaiitegiven the setup.

The setup is as important as the actual computation of thétrégentifying optimal
join locations requires knowledge of the current state efrtatwork. But acquiring this
knowledge can be costly. For instance, the optimal locatidhe centralized case can
be derived from the join selectivity and the placement ofrtbdes (cf. Section 4).

Our goal is to understand which parts of join processing shalild be distributed
for the sake of efficiency. In particular, we seek to derivéiropl solutions for both
of the high-level tasks. This analysis is difficult, maintyr two reasons: (1) Analytic
models of join strategies cannot be reduced to formulaesatteadifferentiable. For our
analysis we borrow from solutions of the weighted Fermabjam and the computation
of Steiner trees, and we use statistical methods to proviiit sonfidence bounds for
our results. (2) The number of possible distributed joiratams is huge, resulting in a
combinatorial problem. A key idea of our work is to developestimator that provides
bounds on the efficiency of distributed joins. Our contirids are as follows:

Identifying the knowledge necessary to devise optimal joifocations. We iden-
tify which knowledge the set up step must gather. Our resutfhat it is sufficient to
know which of the tuples actually join. Further informatilike the join partners of a
tuple or their locations does not help to optimize the prsices This is an important
insight regarding the design of concrete join methods: \Wace the problem to finding
ways of acquiring this knowledge efficiently.

Identifying optimal locations for join computation. We show that, given the knowl-
edge which tuples join, the optimal location for the resathputation is the base station



(except for one special case, cf. Section 5.3). This findastricts the set of distributed
join methods. Once we have identified the tuples contrilgutinthe result it is optimal
to ship them to the base station and join them there. In otbedsy any join implemen-
tation that performs a pre-filtering step should not distigtthe actual join processing.
What do these results mean? We prove that the optimal digtdijoin algorithm
for the general case consists of a (possibly distributetiflg phase, followed by a
centralized result computation. Any energy-savings pgaties in devising an efficient
filtering scheme. Alternative join approaches can be optimspecific scenarios only.
Paper outline. Section 2 reviews join processing in sensor networks. Se@i
presents preliminaries of our work. Section 4 discussetral&red approaches. Our
analysis of distributed join processing is presented irtiGe&. Section 6 concludes.

2 Related Work

Energy consumption of operations like projection, setett[6] and aggregation (e.g.,
[7,8]) are well studied. Efficient implementations existdata-management systems
for sensor networks such as TinyDB [4] or Cougar [5]. Howgetlegse systems do not
support join operations well: TinyDB allows to join data kepthat are located on the
same node only. Although [2] argues that an in-network j@in be beneficial, Cougar
does not feature this. REED [1] allows for a join of a statiteemal relation and sensor
data. REED distributes the static relation among groupsljgicant nodes so that each
node can access these tuples at little cost.

In the following, centralized and distributed approachespmesented that process
joins over several sensor relations inside the networkhaAspplicability of all of them
is limited, they substantiate our central question: Whiatispaf the join processing can
be distributed in order to increase efficiency?

Centralized join methods. A number of approaches compute the join at a single
location inside the network. [9] studies long-running jgjeries in sensor networks.
The authors reduce the problem to a variant of the task+assgt problem and adap-
tively relocate the operator. [10] computes the join on ththetween the input data
and the query issuer. [11] extends the approach for rangeegu€oman et al. [12]
present the details of computing the join at a central locaitiside the network.

Centralized in-network approaches are more efficient tbaring the tuples at the
base station (cf. Section 4) if (1) the join selectivity isywdigh, and (2) the tuples
transmitted to the central site are located close to eadr,atbmpared to their distance
to the base station. Thus, centralized approaches are fimerf when it comes to
general join queries, i.e., if the tuples are distributdditearily in the network.

Distributed join methods. Some of the approaches that distribute (parts of) the
processing will serve as illustrations throughout thisgrajgu et al. [13] propose an ap-
proach which uses a pre-computation. The idea is to corisingcsynopsis per relation
which is used to identify the tuples that join. In additiohe toptimal join location is
computed for subsets of these tuples, i.e., the result igated at different locations.
However, the applicability of this approach suffers frone fame restrictions as the
centralized ones. Thus, this approach does not succeedeanding the applicability
by means of distribution. The approach by Yiu et al. [14] ginples from neighboring



nodes, i.e., the join condition & stance(A, B) < d whered is less than the com-
munication range. The idea is that each node of Relation Adwasts its tuple. Each
node of Relation B performs the join and sends the resultedotise station. Again,
this distributed approach is limited in its applicabilityd specific join condition which
guarantees that the tuples involved are close to each &imatly, an approach that is
designed for the application of tracking rare events isgme=d by Yang et al. [15]. The
approach is based on a pre-computation in which one of tla¢ionsk is distributed to
serve as a filter. While this approach incorporates a digebfiltering, it cannot serve
as a general join method. This is because it requires onesokthtions to be small (a
few tuples). Finally, Yang et al. compute the final resulthet base station. Thus, the
question remains which parts of the processing can belisd to increase efficiency.

Analysis of join processingComan et al. [16] implement some concrete join strate-
gies and compare them using simulations. Their goal is toduridinder which circum-
stances a particular method is superior. Their analysisrapasses centralized methods
as well as a semi-join. In contrast to our work, the paper adm¢saddress distributed
join processing.

3 Preliminaries

This section discusses the design space for join methodfeatutes a problem state-
ment. In addition, we specify our network model and the comication costs.

3.1 Join Queries over Sensor Networks

To facilitate queries over sensor networks the network &ses a(sensor) relation
Networks consisting of homogeneous nodes are represestdiagle table with one
attribute per sensor (e.g., temperature, light) and onle fogr node. If the network is
heterogeneous, groups of homogeneous nodes form differlations. We say tha
node belongs to a sensor relatidghif it contributes a tuple to R.

Our analysis refers to join queries with the following gexdetructure:

SELECT A attrs, B.attrs

FROM Rel ation_1 A Relation_2 B

WHERE preds(A) AND preds(B)

AND joi n-exprs(A.join-attrs, B.join-attrs)
ONCE

The query covers two sensor relations and a set of join dondithat are arbitrary
expressions over the join attributes. In the special casesedf-join, theFROMclause
contains the same relation twice. Optional predicateseMHERE-clauses can narrow
down the scope of the query.

The semantics is the standard SQL semantics extended fpotahaspects of sen-
sor data. In particular, we adopt the non-SQL claOSEE from TinyDB [17]: It spec-
ifies that the result is computed based on the current valugmrticular, SELECT *
FROM Rel _1 ONCE returns a single tuple from each node that belondzeto 1.



3.2 Design Space for Join Processing

Our problemis to find an optim#@in strategy Intuitively, a strategy states how the join
is computed.

DEFINITION 3.1 (Strategy)A strategy is (a) a set of locations where tuples are joined
and (b) the routes along which tuples are sent.

Before discussing alternatives for join strategies, weothice two basic require-
ments that have to hold for any efficient strategy:

REQUIREMENT 1 (Correctness of the Resulihe join result has to be correct.

Correctness is a particular concern in distributed sedtiifge have to ensure that
every pair of tuples that join meets at (at least) one looatio

REQUIREMENT 2 (Minimal routes)An optimal strategy has to minimize the routes
along which the tuples are sent.

This requirement helps to restrict the set of candidatesgtimal strategies. A strat-
egy that sends tuples on an unnecessarily long route hagdagirategy that sends on
a shorter route. — Having described the basic requirememetsiow discuss the design
space of join strategies according to three dimensionafr)ber of processing sites
(2) locations of processingnd the (3granularity of knowledgeequired to identify the
strategy. Figure 1 serves as an illustration. We discuds efathe combinations in this
paper including those that are not named explicitly.

Dimension 1: Number of Processing SitesAlong thenumber of siteglimension,
we make the following distinction:

DEFINITION 3.2 (Centralized Strategy) centralized strategy is a strategy that per-
forms the join at a single node.

DeriNniTION 3.3 (Distributed StrategyA distributed strategy may consist of multiple
(> 1) join locations.

Distributed strategies are defined as a generalizationrifalezed strategies, i.e.,
each centralized strategy is a distributed one.

According to our definition, centralized strategies perfdhe join at one location.
In practice, resource limitations might require severagjinieoring nodes to compute
a join. However, we want to provide bounds on the commurdcatiosts of different
strategies. Using a single node will serve as a lower bounthécommunication costs
of centralized strategies, as we will discuss in Section 4.

Dimension 2: Processing LocationsWe distinguish between the processing loca-
tionsroot andin-network

DerINITION 3.4 (Root StrategyA root strategy transfers all tuples on the shortest path
to the base station where the result is computed.

Root strategies are centralized strategies. We refer totnatieed strategy where
the join location is different from the root aentralized in-network strategy

Dimension 3: Granularity of Knowledge. Identifying the optimal join strategy
requires knowledge of the current state of the network. Rstiance, it has been shown
for centralized strategies that the optimal location deljgean the join selectivity and
on the placement of the nodes [16]. We incorporate the aitigniof knowledge in
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Fig. 1. Design space of join strategies

our analysis since the associated costs can vary significdepending on the level of
detail that is required. In the following, we introduce thiuch levels.

Intuitively, we can identify an optimal join strategy if wa&w everything about the
state of the network:
DEFINITION 3.5 (Complete KnowledgejVe have complete knowledge of the state of
the network if we know the set of sensor relations.

When knowing the sensor relations we know the location of emcle as well as
its current sensor readings. Further relevant informatem be inferred, e.g., the join
partners of a tuple. Thus, complete knowledge would be itte@lentify optimal join
strategies. However, acquiring complete knowledge isipitvely expensive in terms
of communication, and it is unnecessary: If we have comgietsvledge of the sensor
readings, we also know the join result. Thus, we search fetrattions of (parts of) the
complete knowledge which suffice to identify an optimal tetgg.

DEFINITION 3.6 (Knowledge at the granularity of nodd§the knowledge describes
the state of a single node, it is at the granularity of nodes.

ExamPLE 3.1 Knowing the join partners of a tuple or their locationskimowing which
tuples do not join are examples of knowledge at the grariylafinodes. O

DEFINITION 3.7 (Knowledge at the granularity of relatiog}he knowledge abstracts
from single nodes and describes a relation as a whole, it thatgranularity of rela-
tions.

ExXAMPLE 3.2 The join selectivity or the number of nodes of a relatiomlanowledge
at the granularity of relations. O

Our analysis will focus on these levels of abstraction. Spadly, we will show
in Section 5 that knowledge at the granularity of nodes iseaguuisite to identify an
optimal distributed strategy.

3.3 Problem Statement

In order to quantify efficiency we introduce the relative m@@gain. It compares the
costs of a strategycst..-q:) to the costs of a reference strategyst,.r). We use a
relative measure in order to abstract from communicatiodware.



Fig. 2. Scenario

na,ng |Number of tuples of Relatiod, B involved in the join
la.r, .= |Distance from center of masdc, Bc to the rootR
w Angle X AcRBc
da,dp |Distribution (mean distance) of nodes with respect to their center of mass
Ca, Ch Relative costs of sending,, ¢tz for one hop with respect toy 5
o Join selectivity
Table 1.Overview of the parameterization

ta,ts, tap|Tuples of Relatiom, B and a result
Ac, Bc |Center of mass of Relation A, B
A, B; |Node of Relation A, B
R Root node

Table 2. Further notation

DEFINITION 3.8 (Gain)
COStstTat (1)

gain. . =1- costres

Modeling the costs of the strategies is different for theti@@ized and the distributed
case and will be discussed in the corresponding sectioh®tincases, the root strategy
will serve as a reference point. In order to simplify notatigain refers to gain,.
According to the preceding definitions the root strategynisrstance of a centralized
as well as a decentralized strategy. Thus, the following$ol

CoROLLARY 3.1 For optimal centralized and decentralized strategiesstsi.q; <

cost,q0r- Therefore, gaip,,, € [0, 1]. O
DEeFINITION 3.9 (Optimal Strategy Problenf)nd the strategy that maximizes gairy.

3.4 Network Model

In the following, we present and justify our network modek Y&fer to the two relations
to be joined as4d and B. The relations contain those nodes that result from apglyin



the selection predicate$WERE-clause) to a sensor relation. Figure 2 represents the
nodes of Relatiom as filled squares. They are denotedfsc { Ay, ..., A, }. Nodes

of Relation B are depicted as filled circles. Non-filled shapes stand foleeavhose
tuples are excluded by theHERE-clause of the query. The root no@eis depicted as

a star. We refer to a tuple of Relatiohor B ast 4 or t 3, respectivelyt 4 5 represents

a tuple that results from joiningy with ¢5.

In our analysis we distinguish between different statesiefrtetwork according to
the following parameterization: Relatiofican be described by its center of maks
themeandistanced 4 = % -y d(A., A;) of each node to the center and the number
of nodesn 4. Relation B can be described in the same way. The relative location of
the nodes ofA and B to each other and to the root node are described by the angle
w = L ARB. and the distancds.r, Iz = -

Given these parameters, we can abstract from single nodgssyibing the relation
as (A, da,n4). On the other hand, our numerical methods require consete of
nodes based on the parameteds,(d 4, n.4). We therefore assume:
AssumMPTION3.1 The nodes of a relation are uniformly distributed withif.( d 4).

Finally, we will refer to the join selectivity as, which is defined as the ratio of the
cardinality of the join result to the input, i.er,= %. Table 1 summarizes
these parameters. Table 2 contains some further notation.

Appropriateness of our network model.Note that our set of parameters describes
each relation as a whole. There is an infinite number of coéag@iacements of nodes,
which corresponds to each parameter setting.

PrRoOPOSITION3.1 The results obtained for a parameter setting according tbl@d
apply to every instance of node placements that obeys ttiegset

This is true as we found that, given a specific parametemsgtthe gain of sets
of nodes{R, Ay, ..., A, ., B, ..., B } that obey this setting has a very small variance
(Var(gain) < 1%; cf. Section 4). Thus, every instantiation of our networkdeio
results in approximately the same gain. This makes our cotmpadel very well suited
for the analysis.

3.5 Cost Model

Our optimization goal is to minimize the energy consumeccfammunication. To this
end, we need to model the communication costs.

Costs of sending a packet via multiple hopsThe costs of sending a packet are
computed by multiplying the one-hop costs with the numbehays. We model the
one-hop costs as a parameter which is discussed at the emd séttion ¢, ¢;). The
number of hops is approximated by the Euclidean distaiice) between the sending
and receiving node. Thus, the costs of sending a packetinor@a uplet 4 from node
A; to A, are modeled ag( A, As) - cq.

Since we are interested in the relative performance of iffestrategies (gain), a
model that provides costs proportional to the communicatiosts suffices. The Eu-
clidean distance is proportional to the number of hops gitaerfollowing assumption:
AssuMPTION3.2 The sensor network is sufficiently dense such that the Eaolidis-
tance between two nodes is (approximately) proportion#héonumber of hops.



Nodes at optimal locations.In our analysis we will come up with strategies that
perform computations at the mathematically optimal lawai Thus, our model as-
sumes that there exists a node at the derived location. btipeathe node closest to
this location has to be chosen. If the network is sufficiediyse, this node should be
within communication distance of the optimal location. Agault, the number of hops
will be the same or will differ by at most one hop (more or le3$jerefore, we expect
the influence on the results to be small.

AssumPTION3.3The sensor network is sufficiently dense such that thersexisode
within communication distance of each point.

Communication costs per hop:In the remainder of this section we discuss the
communication costs per hog,( ¢;). In addition to defining them, we discuss the range
of these parameters for realistic communication hardwenes is important to derive
meaningful conclusions.

The costs of sending one packet over one hop can be decomim&red costs
per packet andariable costsdepending on the size of the payloadst(size(t)) =
cost iz + costyqr (size(t)). We consider the costs of sending ¢z as well as of send-
ing a result tuple 4 5. In order to reduce the number of parameters, we normalie th
costs with respect to the costs of sending one result taple; -<est(size(ta))

cost(size(tap))”

Variable costsdepend on the size of the tuple. To interpret our results weras:
AsSSUMPTION3.4 The maximum size of a tuple is 15 attributes of two bytes.

Note that 15 attributes is a lot given that current sensoeadite Mica motes are
equipped with up to 8 sensors. Thégg can be up to 30 bytes larger thanif ¢ is at
maximum size, and no join attributes are projected out. dieioto understand the lower
bound on the size of4 5, consider the number of join attributes. It is always pdssib
to construct examples consisting of an arbitrary numbeoiof gttributes. However, in
order to arrive at meaningful conclusions we focus on réalégenarios:

AssumMPTION3.5The number of join attributes in sensor networks is at most 8.

Thus,t 45 can be up to 16 bytes smaller thanif all 8 join attributes fromt 4 and
tp are projected out.

Fixed costsfor sending one packet mainly depend on the MAC and PHY layer
overhead. It results from the wakeup of the transmitterjeasensing, RTS and CTS,
preamble, etc. In order to quantify these costs we lookedairgle of prominent MAC
protocols: S-MAC [18], B-MAC [19], and SCP-MAC [20]. The mimum PHY/MAC
layer overhead we observed is equivalent to the transmiggid27 bytes. This leads
to the following assumption:

AsSSUMPTION3.6 The difference in the energy consumption between sendiegaty
frame and a frame with 16 bytes payload is less than 15%. Tferefice for sending
30 bytes is less than 30%.

This percentage is further reduced by overhearing, caotergrrors and collisions.
Most of the measurements we are aware of refer to the 802dtbqml (e.g. [21]).
There, increasing the payload by 30 bytes results in a diffeg of less than 10%.
Consequently, the relative costs (¢;) are in the range from 0.75 (for a maximum of
30 bytes less thatiyg) up to 1.15 for 16 bytes more. This range should include any
realistic communication hardware.



4 Centralized Join Processing

While our concern is distributed join processing, we startamalysis with the central-
ized case. We will state that all centralized join methodg.(¢10, 12]) are optimal in
specific scenarios only: The nodes involved need to be ctosadh other compared to
their distance to the base station. In addition, a high seiscis required.

This insight is interesting in its own right. [16] has aridivat similar findings by
means of simulation. In contrast, given Proposition 3.%,analytical approach rules
out that there exist placements of nodes that are not in litkethis result. Showing that
centralized approaches are efficient in specific scenanigswotivates our examination
of the distributed case. In addition, there are two reasonpresenting the analysis of
the centralized case: The presentation of the distributsé becomes easier. Further,
we will reduce parts of the analysis of the distributed caghé¢ centralized one.

4.1 Cost Model for Centralized Strategies

Our goal is to identify scenarios where using a centralizedgssing at a single site
J results in energy savings compared to the root strategywleere there is a gain
1 - % > 0). In the following, we provide a model of the costs of cerzed
strategies based on our model of communication costs (cfidde3).

The cost of computing the join at (any) poihts the sum of the costs of sending the

tuples of Relations A and B td and sending the result to the root node subsequently:

na npg
cost,]:an ~d( A, J) +Zcb ~d(Bi,J)+na-np-o-d(J,R)
i=1 i=1
d( Py, P,) denotes the Euclidean distance. Recall that a root strigeggentralized
strategy, i.e.,

nA np
COStyroor = Z Cq - d(A;, R) + Z ¢ - d(Bi, R)
=1 1=1
What remains to be specified for the model is the join locafiomhe optimal join
location is not a parameter but depends on the placement oitities.

PrROPOSITION4.11t is impossible to derive a closed formula for the gain, spective
of the parameterization of the network.

PROOF The join location that minimizesost ; is optimal. This corresponds to the
Fermat problem [16]: For a given set of poift®, ..., P, } and their corresponding
weights{ws, ..., w, }, find a pointJ that minimizes) _, w; - d(P;, J). It has been shown
that there is no closed expression for computing the Feroiat [22]. |

The Fermat problem can only be solved numerically.

4.2 Method

Proposition 4.1 results in two problems: (1) We need a metbhocbmpute the gain
numerically. (2) We must be able to analyze the gain-fundticorder to identify global
and local optima.



na,ng |Number of tuples ofd, B 200, 300
lacwr, Is.=|DistanceAc, Be to R 1.0,1.0
w Angle AcRBc 0.5 30°)
da,dp |Mean distance tod¢, B¢ 0.5,05
ca, by |Relative costs of sending,, tz| 1.0, 1.0

o Selectivity 0.002

Table 3. Standard setting for the analysis

(1) Computation of the gain-function: Our approach for numerically computing the
Fermat point?’ of a set of points{R, Ay, ..., A, B1, ..., B, }) is based on Weiszfeld’s
algorithm [23]. In order to provide strict confidence boundg compute the func-
tion gain{ .=, da,n4,ca, 5.7, dB, B, Cp,w,c) based on the Monte Carlo method
as follows:

For a settingl(4.r,da,n4, Ca,lB.r,dB, "B, Cb, w, o) dO:
1. Generate a random set of poidiR, Ay, ..., A, B1, ..., B, } that follows the pa-
rameter setting.
2. Compute the Fermat poirit
3. Compute the expected gain based:ast ; with J = F
Aggregate the expected gain with the results from formatsrand repeat until the
confidence for the expected gain over all trials is withinl@@with 98% probability.

According to our analysis, the variance of the gain is exélgramall (V ar(gain) <
1%) for different sets of points that obey the same parametgngeThus, the expected
gain is a reasonable measure to compare join strategies.

(2) Analyzing the gain function. We want to identify the optima of the gain function.
Analytically finding optima requires differentiating therfction. However, this is im-
possible for the gain due to Proposition 4.1. It is also protatic to find optima based
on numerical methods: Such methods inspect a discrete nuohbalues and make
assumptions about the values in between. Thus, makingrebkoassumptions is es-
sential for ensuring not to miss local optima. For our analyse approach the problem
twofold: In Section 4.3 we observe that the parameters argtoaic within the range
defined in Subsection 3.5. In Section 4.4 we prove that ouremiza approach finds
the single global optimum for the gain. This proof is indegent of our monotonicity
assumptions. In addition, the proof further substantiitesnonotonicity assumptions
as they are in line with the global optimum.

4.3 Monotonicity Assumptions

This section deals with deriving the assumptions requioedling out local optima of
the gain-function. In particular, we derive monotonicigsamptions based on reason-
ing about the underlying problem. Note that the gain funcinot differentiable and
therefore it is impossible to prove its monotonicity. Thws, first discuss the rationale
behind our assumptions, and then complement our discusgioamputing the values
of the gain function at discrete points. Since the gain dépen 10 parameters, it is im-
possible to provide an exhaustive numerical scan over thpdtameter space. We use



(b)

Fig. 3. (a) Influence ofr A, RB. & distribution; (b) Influence of the result’s size

a systematic approach similar to partial differentiatios, we consider the parameters
in isolation. In particular, we compute the gain numericély systematically varying
one of the parameters and set the other ones to a standangd §&tble 3). This setting
is chosen such that it yields a medium gain (30%), i.e., ib@saus to observe increases
as well as decreases in the gain.

We now establish the monotonicity for the parameters rélait¢he locations of the
nodes, followed by the other parameters.

Influence of the Tuple Locations.We start discussing location-related parameters
(laer>da,ls.Rr,dp,w) by providing an explanation based on characteristics ef th
Fermat point. Figure 2 serves as an illustration. The Fepwiat is located "in between"
the relations. If the angle or the mean distance of the noaléiseir center becomes
larger, the root node comes closer to also being "in betwtdentelations. In this case
the root strategy and the centralized in-network strategysamilar, and the relative
gain of the centralized in-network strategy becomes small.

AssUMPTION4.1The gain increases monotonically as the angleetween the centers
of the relations or the mean distance of the nodes to theitecert/ 4, dg) decreases.
It decreases monotonically as the difference betwgen andis.r increases.

Figure 3(a) illustrates the monotonicity for the mean dists of the nodes to their
centers of massi(y, dg) and the anglev. The discussion fof 4.z andiz. is anal-
ogous. Besides the monotonicity, the Figure 3(a) showsth®in-network strategy
yields the maximum energy savings if all nodes except themode are located close
to each otherdy = dg = 0 andw = 0). This minimizes the routes along which the
input tuples are sent.

Influence of the Result SizeAgain, we start the discussion of the parameters re-
lated to the size of the result ¢, np, 0, cq, ¢p) by providing an explanation based on
the Fermat point. It is known that as soon as the weight of détfeegooints is more than
half of the total weight, it is the Fermat point [24]. Furthwre, if the weight of one of
the points is close to half of the total weight, the Fermanhpwiill be near that point. In
our context, the weight of a node is the number of tuples thegnds multiplied with
the transmission costs. More specifically, the weight ofréseilt isn 4 - np - o, and the
weights of the input tuples arme, - ¢, andnp - ¢,. f na-ng -0 > m-c, +n - cyp,



the Fermat point will coincide with the root node. In thiseas st ; andcost,.,,; are
identical, and the gain will beconte In addition, the larger the size of the result, the
closer will the Fermat point be to the root node.

AssuUMPTION4.2 Computing the result inside the network is only beneficidiéfcar-
dinality of the result is smaller than the input. In partieylthis requires a high se-
lectivity. Thus, the gain is monotonic in the parameterg tletermine the size of the
result: c,, ¢y, ma, B, 0.

We complement the explanation by computing the gain functiéagure 3(b) shows
the gain depending on s (the number of nodes of Relation A) and the selectivity
o. The remaining parameters correspond to the standardgetthe figure confirms
our assumption: As soon as the size of the result outweighifut tuples, the gain
becomes small, and any in-network strategy does not payofthermore, the gain is
monotonic in the parameters that determine the size of thétre

4.4 Gain of Centralized Strategies

In the following, we present the single global optimum of ¢faén function:

PROPOSITION4.2 The gain of centralized in-network strategies has its maxinif the
nodes are co-located{.r = l4.»,dp = dg = 0, w = 0) and the size of the result is
minimal (0).

PROOF We have to show that the scenario in Proposition 4.2 is thieagloptimum.
This can be seen by considering the range of the gain-funfttid] (cf. Corollary 3.1).

In the situation that we identified as a candidate for an aptipcost; = 0, while
cost,.o; takes on some fixed amount. In this case, the gain becomesttusid indeed
a global optimum. Finally, this is the only global optimume\bnclude this from the
formula (gain =1 — %) sincecost ; > 0 (cf. Equation 4.1) for any other settimg.

Due to its monotonicity (cf. Assumptions 4.1 and 4.2) thengfainction has no local
optima.

Concluding remarks. Centralized approaches can be more efficient than comput-
ing the join at the base station in rather specific scenantg do actually choose
among the root strategy and a centralized in-network gtyatae would have to gather
knowledge at the granularity of complete relations, morec#igally: (4.%,da,nA,
caslBoRr,dB, 1B, ch,w,0). This is sufficient as the gain is insensitive to the corecret
set of points as long as they obey the same parameter settiRydposition 3.1). Our
objective in this paper is to find out if it is possible to des#&join method which is effi-
cient for general scenarios. As centralized approachestachieve this, the question
is whether distributing the processing results in more g@jein methods.

5 Distributed Join Processing

5.1 Logical Steps of Distributed Joins

To structure our analysis of distributed join strategies swbdivide the processing into
logical steps. As a motivation we briefly discuss two naivesaisifor join distribution.



Idea 1: Process each tuple on the way from the sensor node to the eoetcould
simply form results tuples whenever two tuples meet thdillftiie join condition.

The problem is that we do not know whether the tuples havéduibin partners.
In order to ensure correctness (Requirement 1, cf. Secj}iae 3vould have to forward
the input tuples along with the result tuples. As the roatsgy only ships the input
tuples, Idea 1 would be less efficient.

Idea 2: A more elaborate idea would be to route the tuples to jointlona based
on their join attributes (e.g., by hashing them onto joirataens).

However, recall Requirement 2: A distributed approach maense only if we
reduce the overall routing lengths compared to a centdhBmtegy. Sending tuples to
arbitrary locations does not minimize the routes.

The important insight is that wexplicitly need to ensure correctness and efficiency.
Given these requirements, we structure distributed jodcgssing as follows:

1. Setup
(a) Derive the knowledge necessary for guaranteeing doess and efficiency.
(b) Devise the optimal strategy, i.e., optimal join locati®) and the corresponding
routes.
2. Result computation
(a) Send the tuples to its join location(s).
(b) Compute the result.
(c) Send the result to the base station.

Note that the purpose of these steps is to illustrate thelgmuband decisions in-
volved in optimally distributing the processing. In particular, these lagical steps.
There might be different ways of addressing them:

ExamMPLE 5.1 Consider the knowledge for ensuring that each pair ofifgi tuples
meets at (at least) one join location (correctness). Onetwaptain this knowledge
is to derive from the query where potentially joining tupbee located. To illustrate,
Yiu et al. [14] rely on the join conditiondistance(A, B) < d whered is less than the
communication range (cf. Section 2). An alternative wayudrgnteeing correctness is
by collecting the knowledge required explicitly. For inste, Yiu et al. [14] propose to
introduce a pre-computation that identifies tuples that joi O

Set up phase:According to Section 4.4 the optimal central join locati@mde de-
termined based on knowledge at the granularity of compé&ions. In contrast, using
knowledge at this granularity to set up an optimal disteloustrategy is a problem: If
one does not know which tuples join with each other, coresgr(Requirement 1) re-
quires sending one of the relations to every join locatioitsrentirety. This should
be the smaller one. The other relation is fragmented amangrdcessing sites. If we
considered just one of the processing sites, the discuBsionSection 4 applies. Thus,
a distributed strategy based on relation-level knowledgelev suffer from the same
problems as centralized strategies: It would be efficietyt fum very specific scenarios.
As we are interested in distributed strategies that are ig@neral than the centralized
strategy, our analysis concentrates on knowledge at timilgnéty of nodes.

It is an open question which knowledge (at the granularitpades) is required to
devise aroptimaldistribution. Do we need to know the join partners of a tufde?ave



need to know their locations to minimize routes? To addigissproblem, we start our
analysis by assuming complete knowledge. In particulagxeetly know which tuples
join with each other and where matching tuples are locatedralx this assumption
at the end of our analysis.

5.2 Using Knowledge at Node Granularity

Knowledge at the granularity of nodes means that we can imfféch tuples have no
join partner. Since an optimal strategy would not send oesehtuples, knowledge at
node granularity leads to distributed filtering Distributed filtering is applicable to
distributed strategies as well as to the root strategy:

DEFINITION 5.1 (Root Strategy with Filtering) root strategy with filtering discards
tuples that do not join and then only sends the remainingetuf the base station.

Even though the root strategy with filtering computes theiltest a single node,

it can be seen as distributed join processing as the set wgepbhalistributed. Note
that filtering cannot be combined with a centralized in-retnstrategy: According to
Section 4 the latter requires a high selectivity. This is futfilled after filtering out
tuples that do not join. We conclude:
COROLLARY 5.1 Knowing which tuples do not join can be exploited for disttdd
filtering. This is orthogonal to distributing the result cpatation, i.e., filtering can
also be combined with the root strategy. It cannot be contbimigh a centralized in-
network strategy. ]

Figure 1 serves as an illustration of Corollary 5.1. Finalg briefly discuss the
gain when combining the filtering with the root strategy.
PROPOSITION 5.1 Filtering requires knowing which tuples do not join. Givenist
knowledge, filtering leads to a gain depending on the fractibtuples that join.

PROOE In the result-computation step the root strategy withriilig sends only the
contributingtuples, i.e., the tuples that join. Leaving aside the cobtsbtaining the
knowledge, the root strategy with filtering can save up to%00Dnone of the tuples
join. At the other extreme, if every tuple contributes to tsult, the root strategy with
filtering is as costly as the root strategy (0% gain). ]

The proposition indicates that efficiently collecting thisowledge is a promising
direction for join processing. Note that the filtering exfdmnly a fraction of the com-
plete knowledge that we are currently assuming.

5.3 Deuvising an Optimal Distributed Strategy

Our interest is in analyzing whether we can achieve a gaingtiynally distributing
the result computation, i.e., Steps 2 a, b, c. In the follgwine focus on amptimal
distributed strategy. It upper bounds the gain of distedustrategies. In particular, an
optimal strategy avoids to send tuples that do not join. &foee, the subsequent dis-
cussion is restricted to joining tuples.

The major difficulty in analyzing how to optimally distriteithe result computation
is that optimal locations and optimal routes mutually depen each other. We start



Fig. 4. Example of two join locations

the discussion with a concept that identifies subsets oésugilat can be regarded in
isolation:

DEFINITION 5.2 (Group)A group of tuples= is a subset of the union of Relations A
and B such that if tuplé € G then every tuple’ that joins witht is in G as well.

EXAMPLE 5.2 For an equi-join a group is a subset of Relations A and Bytiedds a
cross product. In this case, if we restrict the join to a grgyoup its selectivity = 1.
|

The following corollary is a consequence of Definition 5.2:

COROLLARY 5.2 The processing locations of different groups are indepehdgeach
other. 0

The reason is that tuples from different groups do not habe forought together at
one location. This property lets us restrict our analysi $ingle group in order to find
the optimal distribution. We start with a simple example distributed processing that
we will use in subsequent discussions:

ExampPLE 5.3 Figure 4 shows two nodes; , A, belonging to Relation A and one node
B of Relation B. Assume that their tuples form a group and allds have the same
size. The figure shows a strategy whegeis first joined with the tuple froni,. The
result is sent to the root nodes is also sent to a second location where it is joined with
the tuple fromA;. O

Our analysis how to distribute the result computation iscttired as follows:
1. For a group of tuples: identify the optimal number of ps®iRg sites
2. For a group of tuples: analyze where these sites are bhcate

Optimal number of processing sitesThe difficulty in identifying the optimal number
of sites is that our problem cannot be reduced to a solvedemsdtical one. However,
we can upper bound the gain by identifying the scenario Withttighest gain when
distributing the computation of the join result:

DEFINITION 5.3 (n4:1 ScenarioAnn 4:1 scenario is a group consisting afy tuples
of Relation A that pair up with one tuple of Relation B.

PROPOSITIONS.2 Then 4:1 scenario is the optimal case for multiple join locations,
compared to all other groupsi(y : ng), for a fixed set of nodes from Relatidn



PROOEF If na,np > 2 (otherwise we have am,4:1 scenario), the optimal central-
ized join location is the root, as the cardinality of the tesularger than the cardinality
of the input (property of the Fermat point [24]). Considecrgasingn g by 1. If the
computation is centralized, this means that we have to sgrd the root. In the dis-
tributed case, we have to setigl to each of the processing locations. Afterwarndsg,
result tuples have to be sent from the processing sites toetbe station. Thus, the cost
increase for the centralized setting is less in relativeei herefore, the 4:1 scenario
yields the largest gain for a distributed computation, carad to a centralized onea

In the n 4:1 scenario, the tuples can be joined at many locations amliffarent
orders, resulting in a combinatorial problem. We devise ¢shotkfor upper bounding
the gain that consists of:

— an algorithm for computing optimal strategies for two oethtuples in Relation A

(na € {2,3}), and

— an estimator for lower bounding the costs for > 3.

Computing Optimal Strategies.We can compute optimal strategies based on the

following proposition:

PrROPOSITIONS.3 Any join locationJ in a distributed strategy is a Fermat point. It
minimizes the routes of the nodes from which a tuple is sestand to which a tuple
is sent fromJ.

PROOF The proof is the same as the proof of the corresponding psop&Steiner
trees [25]. The idea is that the routes could be further dpéchif the join location was
not the Fermat point. ]

For the caser 4, = 2, Proposition 5.3 restricts the number of possible stratetn
three:

1. Join A, with B at Fermat Poin; and send g on toF; and join it with the tuple

from A; (cf. Figure 4).

2. JoinA; with B, then join A, with 5.

3. Use one Fermat point for all nodgls, A, B andR.
By computing the join locations in all three cases and coingahe overall costs we
find the optimal strategy. Fern = 3 we can follow the same procedure except that there
are 13 possible constellations.

Lower bound estimation.Forn 4 > 3 we lower bound the costs (upper bound the
gain) of processing the join by reducing the problemtp = 3. We accomplish this
reduction by choosing two distinguished nodes from Refafioand assume that the
rest was located at one third point. We choose the two disishgd nodes by taking
the node closest to the root as the first point and the fotleat maximizesl(N, R) +
d(N, B) as the second. The intuition is to take the distribution efribdes into account
in order to arrive at a meaningful estimation of the commaitidn costs. The remaining
nodes of Relation A are assumed to be located at a single@oihie lineR.A¢. In this
way, we keep the mean distance from the root node unchangsdn#ing the remaining
nodes to be co-located leads to an underestimation of the asdt reduces the routing
lengths to pair the tuples. Figure 2 serves as an illustratfdhe third point.

Gain of Several Join Locations.In the following we compute a lower bound of the
costs of computing the join and compare it to the optimal redized strategy. Again,
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Fig. 5. (a) Gain: optimal number vs. single site; (b) Gain: optimal location v4.mode

the following discussion is based on monotonicity assuomgtiof the gain. This is
analogous to Section 4.

PrROPOSITIONS.4 Using multiple join locations per group of pairing tuplesstdts in
energy savings of at most 12% as compared to choosing a siigleThis is an upper
bound on the savings for the optimal scenariq (1) and holds if the tuples of Relation
A are larger than the result tuples.

We found the costs, of sending a tuple of Relation A to be the most influential
parameter. Figure 5(a) shows its influence along with théeandpetween Relation A
and B. Intuitively, if the result tuples are larger than theeg of Relation A, < 1),
sending the input tuples directly to the root node is a goamogh Thus, the optimal
centralized as well as the optimal decentralized strategyalike. Only if the result
tuples are much smaller than the ones of Relation A, muljgielocations can reduce
the energy consumption. Our analysis confirms this intitlbc, < 1 using a single
join location is optimal. In addition, Figure 5(a) alreadyo®/s the maximum gain:
In analogy to Section 4, the gain computed confirms the manctg assumptions.
Therefore, we have identified the globally optimal gain.

Our analysis of the scenario with the maximum gain reveasttie upper bound
for the energy savings of multiple locations per group ofijog tuples is small. Thus,
the number of join locations should be one per group.

Location of Optimal Site per Group In order to identify the single optimal join lo-
cation per group, we compare computing the result for a gailfs Fermat point to
computing it at the root.

PROPOSITIONS.5In settings with a filtering the optimal location per grouptie root
node ifn 4, np > 2; the location is the same for every group.

The analysis for one group is the same as the one in Sectidrebly difference is
that the selectivity factor is high (selectivity is low),laast "i for then 4:1 scenario,
and the number of tuples per group might be small. Thus, thaltsedirectly apply.
The most important influence is the size of the result, whichaiger than the input
if na,np > 2. Figure 5(b) visualizes this influence, depicting the petakgain of
the optimal location. As soon as the group consists of mae tme tuple per relation
(na,np > 2) the root node is the optimal location. Onlyify = ng = 1 a distributed




join strategy can save up to 50% energy if two input tupled teane result tuple. Note
thatn4 = np = 1 means that none of the two joining tuples has a further joitnpa

Conclusion.Our most important insight is that the result computatioogsmally
performed at the root node, if all tuples that do not join dterid in advance. Joining
tuples at multiple locations does not increase the enéeffggremcy. This result applies
for every join method that involves a filtering. A distribdtstrategy which is more gen-
eral than the centralized strategy but does not involveexifilg is impossible because
devising a distribution requires knowledge at the grariylaf single nodes. Finally,
the distributed filtering is a promising direction to proggsn queries efficiently if only
a small fraction of the tuples join, and the knowledge candogised efficiently. This in
turn settles the knowledge at the granularity of nodes thagquired: We need to know
which tuples join. Most notably, information beyond thahi helpful to optimize the
processing further.

6 Conclusions

In sensor networks, simple query operators are optimalgceted by reducing the
amount of data close to the sources. This requires a digtdbprocessing. In con-
trast, distributing the computation of joins is an open jeob In this paper, we aimed
at theoretical insights in how to efficiently distribute tjoén. We were interested in
analytically identifying parts of the problem for which warcderive optimal solutions.
Our most important contribution is to show that joining &gpht multiple locations does
not increase energy-efficiency. This result applies forey@n method that involves
a filtering. We showed that after the filtering the result isioplly computed at the
base station. As devising an optimal strategy only makeseskased on knowledge at
the granularity of single nodes, the filtering is inheremtiytained in a distributed pro-
cessing. At the same time, the filtering can result in sulbistesavings if only a small
fraction of tuples joins. Thus, developing efficient methddr finding out which of
the tuples join and subsequently joining them at the basests the most promising
direction towards an efficient join processing and is in foofiour ongoing work.
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