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Abstract. Type Extension Trees (TET) have been recently introduced as an ex-
pressive representation language allowing to encode complex combinatorial fea-
tures of relational entities. They can be efficiently learned with a greedy search
strategy driven by a generalized relational information gain and a discriminant
function. In predicting the metal bonding state of proteins, TET achieve signifi-
cant improvements over manually curated motifs, and the expressiveness of com-
binatorial features significantly contributes to such performance. Preliminary col-
lective classification results seem to indicate it as a promising direction for further
research.

1 Learning Type Extension Trees

A TET [1] consists of a tree-structured logic formula where nodes are conjunctions of
literals, and edges are labeled with sets of variables. Instead of a simple truth assign-
ment, a TET defines a complex combinatorial feature whose recursive value structure
accounts for the number of times each subtree can be satisfied, given the possible bind-
ings of its edge variables. A simple discriminant function [2] can be defined over TET
as a kind of pseudo maximum-likelihood ratio, and TET structure learning have been
addressed [2] with a recursive top-down strategy. The algorithm basically generates a
set of candidate extensions of the current TET, according tosome pre-specified lan-
guage bias as standard in ILP methods, but instead of directly evaluating each of them,
it relies on a generalized infogain criterion [2] to select the most promising directions
for further expansion. Generalized infogain aims at measuring bothdirect andpoten-
tial informativeness of a certain extension, the latter being conditioned on appropriate
refinements further down in the tree structure, thus performing a kind of selective looka-
head strategy [3]. The discriminative power of a whole subtree is eventually evaluated
once a certain pre-specified depth has been reached, or the score of further expansions
falls below a given threshold (see [2] for details).

Supervision on related entities can be introduced in TET by allowing target pred-
icates to be included as candidate extensions (with proper constraints to avoid trivial
TET with the target predicate instantiated with target variables). A simple iterative pro-
cedure can be also conceived in order to implement a collective classification approach:
first, a bootstrap TET is learned without using target predicates, and its predictions are



used to initialize the labels of all instances; second a collective TET is learned by includ-
ing target predicates in the language bias. During testing,the bootstrap TET initializes
predictions, and the collective TET iteratively refines them until no relabeling occurs
between two successive iterations, or a maximum number of iterations is reached.

2 Metal Bonding State Prediction

Metal ions play a central role in living organisms, performing structural, catalytical and
regulatory functions in the cell. About one third of the known proteins is believed to
bind metal ions in their native conformation. Metal bindingsites are quite specific in
terms of number and type of coordinating residues: CYS and HIS are the most common
ligands, followed by GLU and ASP which are however much more frequent in proteins,
and each ion has few preferred coordination numbers, ranging from one to eight. Regu-
larities in terms of number, type, and distance of ligands and surrounding residues have
been encoded by biologists in motifs [4], either regular expressions or position-specific
profiles with amino acid weights and gap costs. Such motifs provide interpretable fea-
tures characterizing metal binding sites, but their performance are far below those of
complex machine learning approaches employing multiple alignment profiles [5]. Pre-
liminary experiments [2] showed that TET are able to significantly improve over man-
ually curated motifs while retaining much of their interpretability, and that counts-of-
counts features significantly contribute to such improvements, as shown by comparisons
to results obtained learning standard regular-expressionlike TET and to those achieved
by the Tilde ILP system. The dataset and the 5-fold cross validation procedure used in
the experiments were taken from [5]. Residue attributes made available to TET learn-
ing consist of the binarized evolutionary conservation of either relevant residue types
such as CYS, HIS, ASP, GLU or PRO, or relevant residue classessuch assmall, hy-
drophobic or negative. Relations have the formWithin n(p,r1,r2) andPlus n(p,r1,r2),
and represent pairs of residues(r1,r2) in a certain proteinp whose sequence separa-
tion is at most or exactlyn, respectively. Figure 1 (left) shows a TET branch4 which
proved quite stable in predicting CYS ligands, encoding counts-of-counts features of
the candidate residue neighbourhood. HereXXX andY Y Y can be: HIS ornegative
identifying candidate co-ligands (ASP and GLU are both negatively charged);polar
or positive identifying hydrophilic residues and thus an exposed protein surface;small
indicating a small residue which favours the local flexibility. Collective classification
experiments introduce an additional learning issue, as target predicates available for
candidate extensions are predicted and thus subject to predictive errors. Figure 1 (right)
shows an ideal TET learned assuming that labels of related residues are given. The left
branch considers the number of co-ligands occurring in the protein, while the right one
searches for other proteins having ligands in the same position (residues are identified
by their position in sequence), and for nearby ligands in thetarget protein. Such TET
fails to generalize to new proteins, where knowledge of the labels of related residues
cannot be assumed and must be replaced by predicted labels, as it relies too heavily on
the quality of such predictions. More robust TET can be learned assuming predicted

4 In all reported TETs, inequality constraints forcing newlyintroduced variables to be different from root
ones were skipped for simplicity.



labels (according to a non-collective TET) instead of true ones for related residues dur-
ing training. However, using the same acceptance thresholdfor extensions employed
in [2] tends to produce too simplified collective TET on some of the folds, worsening
performance with respect to the corresponding non-collective TET. The problem can be
partially fixed by decreasing the acceptance threshold. Table 1 reports areas under the
ROC curve for different folds with non-collective and collective TET, where not con-
served residues are considered non-binding by default, in order to focus on ambiguous
cases. Collective classification outperforms individual predictions on 2 and 3 out of 5
folds for CYS and HIS respectively. The fact the HIS prediction benefits more from
collective classification is not surprising, as CYS predictions tend to be more accurate,
and can thus propagate to nearby HIS.

Table 1. Area under the ROC curves for CYS and HIS metal bonding state prediction for different
folds. Comparison between single TET as in [2] and collective TET with different thresholds for
extension acceptance.

CYS HIS
fold TETsingle TETcoll simple TETcoll complex TETsingle TETcoll simple TETcoll complex

1 89.6± 1.6 91.6± 1.4 91.7± 1.4 83.1± 2.1 80.5± 2.2 80.0± 2.2
2 92.0± 1.4 91.1± 1.4 91.0± 1.5 84.1± 2.4 84.8± 2.3 85.4± 2.3
3 84.6± 1.8 85.6± 1.7 87.6± 1.6 78.2± 2.2 80.0± 2.2 80.3± 2.2
4 85.8± 1.7 85.1± 1.8 85.7± 1.7 79.6± 2.4 76.8± 2.5 79.5± 2.4
5 89.8± 1.6 81.0± 2.0 83.9± 1.9 82.1± 2.2 86.2± 2.0 87.3± 2.0

Figure 2 shows the best conserved fragments which were learned across differ-
ent folds in CYS prediction. The TET combines target information from the relational
neighbourhood with unsupervised features in order to account for possible estimation
errors. The first branch considers predicted co-ligands in the protein as in the corre-
sponding branch of the ideal TET, but it further refines such information considering
their distance to the target residue, and the presence of additional conserved CYS nearby
as an indication of possible ligands. The second branch considers unsupervised features
only, looking for candidate co-ligands (CYS or HIS) or smallresidues improving flexi-
bility in the neighbourhood.
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Fig. 1. TETs for metal bonding state prediction: (left) TET fragment from [2];(right) TET learned
assuming that labels of related residues are given
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Fig. 2. TET fragments learned assuming a collective classification setting
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