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Abstract. Many biomedical applications involve temporal data, for ex-
ample time-series gene expression experiments or longitudinal clinical
data. From the statistical modeling side of SRL, dynamic Bayesian net-
works are a natural fit for such data, but they normally cannot in-
corporate additional types of relational information, such as the inter-
action between genes. In this paper, we examine the construction of
logical DBNs from rules, either learned by relational learning methods
or human-provided; in some cases, this construction requires combin-

ing rules. In some cases using such DBNs requires improved inference
algorithms; we propose efficient inference within such DBNs by a Rao-
Blackwellized particle filter. This work is motivated by two very different
biomedical applications. One is incorporating the rich available back-
ground knowledge about genes and proteins when modeling time-series
gene expression data. The other is modeling longitudinal nursing home
data to estimate health status and health trajectory of individual pa-
tients and of groups of patients at specific facilities. This paper focuses
on general principles rather than specific representations; we believe the
lessons here are applicable for modeling time-series data within SRL.

1 Introduction

An important broad class of applications for SRL is time-series analysis. In
this work-in-progress paper, we examine two important biomedical applications
within this class.

First, we examine the task of modeling time-series gene expression data in
the presence of additional background knowledge. Much work has been invested
into learning biological regulatory networks from gene expression data collected
by microarray technology. A major challenge is determining the direction of
causality in such networks. If Gene A is a good predictor of Gene B, this does
not mean Gene A controls Gene B. Rather, Gene A may be a good predictor
of Gene B because Gene B controls Gene A, or because both are controlled by
a third gene, or even because of more complicated scenarios. Time-series data
can give more insight into causality. If a change in Gene A is a good predictor
of a change soon thereafter in Gene B, then we can be more confident (though
still not certain) that the change in Gene A is helping to cause the change
in Gene B, and not vice-versa. If we furthermore have additional background
knowledge indicating that Gene A and Gene B are known to interact, we can be
even more confident at least of a connection between Gene A and Gene B. Such



additional background knowledge is especially important given the limited data
we typically have from gene expression experiments, particularly time-series ex-
periments. With this motivation, we examine SRL for modeling time-series gene
expression data with respect to relevant background information. The resulting
approach can be seen as an extension of previous work using dynamic Bayesian
networks (DBNs) to model time-series gene expression data, where the extension
incorporates background knowledge.

The second task we examine is modeling longitudinal clinical data. Specifi-
cally, we examine the task of modeling data about nursing home patients over
time. Given observed variables about patient health, we wish to infer the hidden
actual health state of a patient and accurately predict the patient’s health tra-

jectory - the values of this health state – over the coming weeks. If this task can
be performed accurately, one major practical benefit to society is to intervene
sooner when a patient’s health is in danger of rapid deterioration. Another prac-
tical benefit is to identify patterns in patient health in various nursing homes,
so that homes with poorer results can be improved.

Both of the applications in this study involve modeling of time-series data.
Nevertheless, we use both rather than a single one because these two applica-
tions illustrate different issues and require different capabilities within SRL. The
gene expression application requires learning rules to predict when one gene’s
expression will change based on changes in other genes; these rules can utilize
background knowledge. Inference within the learned models is not particularly
difficult. The clinical application, on the other hand, can begin with a reasonable
set of human expert-constructed rules, and the major challenge is in the infer-
ence, because the key step is inferring the values of the hidden state variables
over time. This application can also benefit from learning to further refine the
rules, though initially parameter learning (which relies on inference) is sufficient
for the task.

2 Gene Fold Prediction

We used time-series gene expression data of environmental stress response ex-
periments, including DNA-damaging agents from Gasch et al. [5, 4]. Our study
focused on the DNA damage checkpoint pathway because it has been widely
studied. The time-series expression data was discretized by determining the rel-
ative change in expression from one time step to the next, i.e. comparing the
expression levels between two consecutive time series measurements. The time-
series data were discretized into one of three possible discrete values by compar-
ing two consecutive time series measurements: if the change increased by 0.3, we
consider the expression to be up-regulated, if the change decreased by 0.3, we
consider the expression to be down-regulated, otherwise we say the expression
stayed the same.

There are many other spatial and molecular interactions that are not cap-
tured by expression data, thus we incorporated other relational sources of data
to facilitate learning. Known transcription factors for specific target genes can



allow the learning algorithm to focus on specific proteins that are known to in-
teract with the DNA of the target gene and potentially discover combinations of
transcription factors (pairs, triples, etc.) required to trigger a change in expres-
sion of a particular set of genes. Because transcription factors can also interact
with other proteins or metabolites on their way to activating gene expression,
background knowledge of proteins that are known to interact with each other
were included to allow for the discovery of novel proteins in the pathway. Fur-
thermore, an estimated 30% of proteins need to be phosphorylated in order to
trigger a change in the protein’s function, activity, localization and stability [6].
Thus, background knowledge about a large number of protein phosphorylation
in yeast was also included [2].

We aim to link known interactions with gene expression activity to possibly
learn new mechanisms. We do this by associating the up- or down-regulation of
specific genes from the previous time step with its transcription factor, a protein
it might interact with, or a phosphorylation event. We assume that an event in
the previous time step will contribute to the change in expression at the current
time. This assumption does not necessarily hold for all biological activity but a
similar assumption, that of using a gene’s expression level to approximate the
activity of other genes within the same pathway, have been used by others [14].

The ILP system, Aleph [13], was initially used to learn rules from the data.
The following are three examples of rules learned:

Rule 1 up(GeneA,Time,Expt) :-
previous(Time,Time1), down(GeneA,Time1,Expt), interaction(tof1,GeneA), up(tof1,Time1,Expt),
function(GeneA,’CELL CYCLE AND DNA PROCESSING:cell cycle:mitotic cell
cycle and cell cycle control:cell cycle arrest’).

Rule 2 up(GeneA,Time,Expt) :-
previous(Time,Time1), down(GeneA,Time1,Expt),
phosphorylates(GeneA,GeneE), up(GeneE,Time1,Expt),
transcriptionfactor(GeneF,GeneE), down(GeneF,Time1,Expt),
transcriptionfactor(GeneF,cdc20), down(cdc20,Time1,Expt).

Rule 3 up(GeneA,Time,Expt) :-
previous(Time,Time1), down(GeneA,Time1,Expt),
interaction(GeneE,GeneA), down(GeneE,Time1,Expt),
interaction(GeneE,mms4), down(mms4,Time1,Expt),
function(GeneA,’METABOLISM’).

These rules all specify the activity of specific genes involved in the larger
DNA damage pathway. For further details, see [12].

In order to develop a model that would allow us to understand the mechanism
of the underlying regulatory network, we wanted to use the rules to construct
a Dynamic Bayesian Network and learn the parameters. Though the approach
seems to be efficient, the process of creating a ground DBN loses the relational
information that was gained using ILP. We wanted to maintain the relational
information learned as it could potentially provide a better understanding of
the regulatory mechanisms involved. For example, there are many interactions



between regulators and promoter regions that do not necessarily result in the
expression of a particular gene, only some particular combination would result in
expression. This interpretation would be lost without the relational information.
Furthermore, the relational models can exploit parameter tying which helps in
accelerating the learning process. In the next section, we outline our proposed
relational learning method.

2.1 Utilizing a Relational Learner

The ILP rules are learned to predict a target predicate. We interpret the rules
probabistically. In the spirit of SRL models, associated with every rule y :
xi

1, .., x
i
n is a conditional probability tables P (y|xi

1, ...x
i
n). Note that this rela-

tional representation is similar to several logic based formalisms such as Bayesian
Logic Programs [8],Markov Logic Networks [1] etc. It should be specified that
our models are directed (unlike MLNs) and is in the spirit of other directed re-
lational formalisms. As can be seen, there could be more than one rule learned
using ILP for a single target predicate (denoted by the superscript i). In many
cases, a single parameterized rule can result in multiple instantiated sets of par-
ents that influence a single ground target variable. Also, there could be a number
of rules for a single target predicate. Hence there is a necessity for combining
the distributions at multiple levels. The multiple instances of a single rule are
combined using the mean combining rule while the distributions that arise due
to the different rules are combined using the weighted mean combining rule.

Let us assume that each ILP rule Si (‘rule i’ for short) for the target pred-
icate Y has k influents, Xi

1 through Xi
k (which we jointly denote as Xi), that

influence the target variable. When this rule is instantiated or “unrolled” on a
specific database, it generates multiple, say mi, sets of influent instances, which
we denote as Xi

1 . . .Xi
mi

. This is shown in Figure 1. In the figure, the instan-
tiations of a particular statement are combined with the mean combining rule.
The distributions resulting from the different ILP rules are combined via the
Weighted-Mean combining rule. Recall that in our problem the variable Y refers
to the predicate up.
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Fig. 1. Unrolling ILP rules



The role of the combining rule is to express the probability Pi(Y |Xi
1 . . .Xi

mi
)

as a function of the probabilities Pi(Y |Xi
j), one for each j, where Pi is the CPT

associated with Si. For example, with the mean combining rule, we obtain:

P (y|Xi
1 . . .Xi

mi
) =

1

mi

mi∑

j=1

Pi(y|X
i
j) (1)

If there are r such rules, we need to estimate the conditional probability P (Y |X1
1,1...X

r
mr,k).

If wi represents the weight of the ith combining rule, the conditional of Y is :

P (Y |X1
1,1...X

r
mr,k) =

∑r

i=1 wiP (Y |Xi
1 . . .Xi

mi
)∑r

i=1 wi

(2)

Learning algorithms based on Gradient descent that employs either mean-
squared error or log-likelihood and on EM have been presented in [11]. We are
currently investigating the use of these methods in learning the CPTs associated
with the ILP rules. It has been established in [11, 7] that learning with the
presence of combining rules in relational models is very efficient compared to
unrolling them to a propositional model. These results form the basis of our
current research to directly learn the parameters of the ILP rules. Lastly, it
should be mentioned that unlike the other domain, the inference in this domain
is not a hard problem. This is due to the fact that all the influents of the different
ILP rules are observed and hence the inference problem reduces to computing
the probability distribution as presented in equation 2.

3 Nursing Home DataSet - Predicting Chronic diseases

Chronic diseases can comprise a significant portion of a life span and can have
impact on a range of aspects of functional and biological health. Due to the
long natural history of chronic disease, there is more potential for interaction
with other diseases (e.g. diabetes and atherosclerosis), risk factor exposures
(e.g. cigarette smoking and obesity) and age-related declines in physiology (e.g.
changes in brain tissue and temporally accumulated arterial damage). These ef-
fects appear to leave the individual more at risk for developing other diseases, a
condition known as comorbidity, which refers to the occurrence of one or more
other diseases among people with an index or baseline disease. Comorbidity has
been shown to be associated with mortality, length of hospital stay and disabil-
ity thus when assessing a person’s overall state of health, accounting for their
total disease burden can improve diagnostic and prognostic efficiency. In elderly
populations, comorbidity occurs frequently and as the aged population increases
in our society, the assessment of comorbidity has become progressively more
important, particularly for health policy makers and administrators in regard
to health costs and health planning. Thus it is necessary to model disease be-
havior in the elderly as a multidimensional stochastic system evolving according
to internally programmed age dynamics, the dynamics of the chronic diseases



and comorbidity, and the interaction of the various dimensions of specific health
status of individuals [3].

The data that is used in this analysis comes from a set of nursing home
quality indicators that are gathered and maintained by the UW Center for Health
Systems Research. All U.S. Nursing homes which have a resident population of
over 2,000,00 have been required to assess the health status of each resident
quarterly beginning in 1998. These assessments are standardized in United States
and the assessment instrument (resident assessment instrument - RAI) consists
of 250 separate items that are grouped into 12 categories (such as cognition,
communication, vision, mood, health conditions, disease diagnosis etc). These
are intended to measure dimensions of health that support the clinical processes
in the nursing home. In this instrument, multiple items are grouped together to
form a summary scale or index, representing the dimension of focus. It could be
argued that all biomedical studies involve latent variables of some kind since it
is almost impossible to directly measure the variables of primary interest. In the
case of development of RAI there was no use of statistical methodology in the
design phase. Hence, there is not a statistically sound description of the latent
constructs that are actually measured by the instrument. Thus the modeling
task involves determining the number of latent constructs and their relationship
to the items measured by the instrument in addition to the determination of the
temporal dynamics of the co-evolution of the latent constructs.

The general approach to modeling the relationship of measured assessment
items to underlying latent constructs is to apply Bayesian networks structure
learning methods. The unsupervised learning of an optimal Bayesian network
from data is NP-hard and as such constrained versions of Bayesian networks
such as nave Bayes have been applied with promising results. The assumption
of nave Bayes is that all attributes are conditionally independent given the class
label which in the context of the measurement of dementia in the RAI is clearly
violated. One of the research ideas is to build a baseline learner based on Tree-
Augumented Naive Bayes (TAN). These TAN networks retain the tractability
for learning and inference while not making the independence assumption. The
challenge in this approach would be to construct a dynamic version of the TANs
to monitor the health variables over time.

3.1 Relational Modeling

Yet anther possible solution for this problem would be to construct a hand-
crafted DBN and then perform inference on the latent variables. The main bot-
tleneck is that this DBN would involve about 250 variables. It would be extremely
tedious for a domain expert to construct this DBN. Also, the number of latent
variables will be very high and hence performing inference is not possible in such
cases. Hence we resort to using a relational model and performing inference. We
are currently in the process of designing this model after collaborations with the
domain expert and the work presented is preliminary in nature. In this section,
we present a Rao-Blackwellized particle filter algorithm for performing inference.



The model that is being developed is a logical version of a DBN i.e., the
model consists of two kinds of relationships. First is the intra-time slice relation-
ship which is described by a set of probabilistic ILP rules as presented in the
previous section. The second is the inter-time relationship which describes the
probabilistic relationship between certain predicates at two consecutive time-
steps (similar to a DBN except that the variables are logical predicates). Given
certain observations, the task is to perform inference over the latent predicates.
It is important to note that not all the other variables are observed.

Let us denote the set of latent variables as xt and the observation at time
step t is denoted by yt. Corresponding to the relationships, there are 2 kinds
of distributions in the model: the selection distribution which specifies the joint
distribution P (xt, yt) over the variables at the current time-step and the sec-
ond is the transition distribution that specifies the joint distribution over the
transitions between the variables at consecutive time-steps. Samples are drawn
according to the optimal proposal distribution P (xt|xt−1, yt) where,

P (xt|xt−1, yt) =
P (yt|xt)P (xt|xt−1)∑
xt

P (yt|xt)P (xt|xt−1)
(3)

and the weight wt is given by,

wt ∝ P (yt|x
i
t−1) =

∑

xt

P (yt|xt)P (xt|xt−1)

The states are then re-sampled based on the weights of the samples. The
health variables can then be marginalized out of the resulting distribution. Since
particle filter has been shown to have a poor performance in high-dimensional
spaces, we plan to resort to a Rao-Blackwellized version. In this version, we
plan to sample the predicates at the next time-step while exactly marginalizing
out the variables in the predicate. The intuition is that since the data is highly
relational, the variables would be related to one another. For example, a person’s
chance of having a disease might be influenced by his parents’ attributes. Hence,
if the person’s identity is known, the parents’ identities can be obtained. A similar
particle filter was proposed recently for Logical Hierarchical HMMs [10]. The
authors show that if a large number of relationships are observed, the particle
filter can perform very well and is extremely fast compared to the exact inference
procedure.

4 Conclusion

In this paper, we have presented two of our current focus time-series problems
that pose slightly different challenges. In the gene fold prediction problem, the
complexity lies in learning the relational models while in the chronic diseases do-
main, the problem is to perform efficient inference. We propose to use combining
rules to combine the distributions due to different instantiations and different
rules. We further propose to use learning algorithms based on EM and gradient



descent for learning the parameters of the distributions and the rules. In future,
we would also like to extend our work to search through a suite of combining
rules and find the best combining rule that fits the data. In the chronic disease
domain, we propose to use a logical version of DBN and develop an inference
algorithm based on Rao-Blackwellized particle filter. We also currently looking
to compare this relational model against a Tree Augumented Naive Bayes (TAN)
model as a baseline. Also, it would be useful to compare other approaches such
as MCMC that have been recently proposed for relational models[9]. Finally, it
would be useful to develop a dynamic model based on SRL principles that can
be used to perform both learning and efficient inference for temporal bio-medical
applications.
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