
Optimization and Evaluation of
Probabilistic-Logic Sequence Models

Henning Christiansen and Ole Torp Lassen

Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies

Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark
E-mail: {henning, otl}@ruc.dk

Abstract. Analysis of biological sequence data demands more and more
sophisticated and fine-grained models, but these in turn introduce hard
computational problems. A class of probabilistic-logic models is consid-
ered, which increases the expressive power from HMM’s and SCFG’s
regular and context-free languages to, in principle, Turing complete lan-
guages. In general, such models are computationally far too complex for
direct use, so optimization by pruning and approximation is needed. The
first steps are made towards a methodology for optimizing the models
by approximations using auxiliary models for preprocessing or splitting
them into submodels. An evaluation method for approximating models
is suggested based on automatic generation of samples. These models
and evaluation processes are illustrated in the PRISM system developed
by other authors.

1 Introduction

Our main goal with the present work is to promote new strong models defined
in declarative languages (such as extensions to Prolog) for biological sequence
analysis. This provides the familiar advantages of declarative programming; it
is known that standard models such as HMM and SCFG are embedded in nat-
ural ways, they can be extended and combined in very flexible ways, and long-
distance context-sensitive dependencies can be modelled using logical variables
and arbitrary auxiliary data-structures and predicates.

The resulting expressive power up to in principle Turing complete languages,
evidently has serious consequences for computational complexity. The present
work suggests the first steps towards a methodology for optimizing such models
by approximations and assessing the quality of the approximating models. We
focus currently on models that can be expressed in the PRISM system [11, 12],
but our general framework is independent of the particular formalism used.

2 Probabilistic-Logic Models and Basic Assumptions

We consider probabilistic models that describe relationships between sequence
data and annotations that capture the information or the “semantics” embedded

in the data, and we intend that such models can be used for computing the best
annotation for a given sequence, where “best” is defined as the one with highest
probability.

The models defined below may attach auxiliary annotations to a sequence,
which are projections of the full annotation; they are redundant, but are utilized
later when we introduce preprocessors which may gradually produce larger and
larger parts of the full annotation.

Definition 1. An annotation domain of degree n, n ≥ 0 is a sequence of sets
[A0,A2, . . . ,An] equipped with projection functions π : Ai−1 → Ai, i = 1 . . . , n.

Example 1. For given sets Street, City, Country, we may have A0 = Street ×
City × Country, A1 = City × Country, A2 = Country, and π clips of the first
element of the tuple to which it is applied.

Models range over sets of ground first-order atoms built over a finite signature
which includes list construction for representation of sequences and operators
that form annotations. The underline symbol is used to denote an “anonymous
variable” as in Prolog, i.e., each occurrence is a unique variable.

Definition 2. A probabilistic-logic model m = 〈Lm, Pm〉 consists of a logical
part Lm which is a set of ground atoms of a predicate m(Ao, A1, . . . , An, S) and
a probabilistic part which is a probability distribution over Lm. The arguments
of predicate m are characterized as follows.

– [A0, . . . , An] belongs to an annotation domain specific for m [A0,A2, . . . ,An],
and π(Ai−1) = Ai, i = 1 . . . , n; this property is referred to as a functional
dependency.

– A0 is called the (full) annotation, A1, . . . , An the auxiliary annotations,
– S represents the sequence.

The distribution is extended to any nonground m atom, M , as follows.

Pm(M) =def

∑
M ′ is a ground instance in Lm ofM

Pm(M ′)

For given model m, we use the following shorthands; S is a sequence and
A0, A1, . . . , An are (auxiliary) annotations.

Pm(S) = Pm(m(, , . . . , , S))
Pm(A0|S) = Pm(m(A0, , . . . , , S)|m(, , . . . , , S))

We refer to the task of computing argmaxα(P annot(S)
m (α)) as prediction and as

predicting the best annotation for the given S; recall that argmaxα(· · ·) is a value
of α that provides a maximal value of the inner expression.

The following basic assumptions are made about the interpretation of the
probabilities provided by such models.

Assumption 1 A model may be distinguished as canonical, and its quality is
not questioned; it is assumed to represent the best knowledge about the domain
(e.g., a projection of nature) available among domain specialists (e.g., biologists).

Assumption 2 The probabilities given by a canonical model are inherently cor-
related to the quality of a given sample: an annotation with a relatively high
probability for a given sequence scores high with accepted measurements, e.g.,
precision and recall for genes found by a model when compared with laboratory
experiments; and vice versa. Furthermore, a sequence with high probability shows
high similarity with those sequences that can be observed in nature.

We notice some immediate consequences of these assumptions, when P is a
canonical model and S a sequence with a relatively high probability.

– Two annotations A and A′ with relatively high probabilities P (A|S) and
P (A′|S) are similar, i.e., when comparing their detailed structure, there will
be a considerable overlap in the occurrences of phenomena that are counted
in accepted measurements (e.g., particular genes counted for recall and pre-
cision).

– An annotation A′ produced by an implemented procedure is acceptable (i.e.,
scores high in accepted measurements), whenever the magnitude of P (A′|S)
is comparable to P (A|S) where A is the best annotation of S given by P , P
being the probability distribution of a canonical model.

These observations allow us to consider approximating models that prune not
only low probability candidate annotations, but also some of the high probability
ones.

3 Optimization by Preprocessing and Combined
Submodels

An interesting canonical model is most likely computationally too complex for
predictions over sequences of realistic size and we consider in this section ap-
proaches to produce approximating models in terms of preprocessing to address
the issues of complexity. We also show how their qualities may be evaluated. By
preprocessing, we mean producing auxiliary annotations by specialized analyses,
expected to run significantly faster that the canonical model itself.

3.1 Preprocessing

Consider a canonical model mc with annotation domain [A0, . . . ,An] and pro-
jections π. By a preprocessor system for mc, we refer to a set of n + 1 models
ma

i = 〈La
i , P a

i 〉, i = 0, . . . , n such that ma
i (Ai, . . . , An, S) ∈ Li implies that

Ak ∈ Ak and π(Ak+1) = Ak, k = i − 1, . . . , n. A preprocessor system gives rise

to the composition of an approximating distribution defined as follows.

P a(A0, . . . , An, S) =def P a
0 (A0, . . . , An, S)

where
An = argmax

An

(P a
n (An, S))

An−1 = argmax
An−1

(P a
n (An−1, An, S))

...
A1 = argmax

A1

(P a
i−1(A1, . . . , An, S))

Notice that we use argmax to fix a particular value gradually for each annotation
An, An−1, . . . except for the topmost A0 where a degree of freedom is kept open,
as to define a distribution. However, we may expect that P a is used for the
prediction of a best A0 for given sequence S.

There is one big difficulty in comparing the distributions P c and P a in that
they do not in general describe the same annotations for the same S. So our
Assumption 2 above is essential in order to consider approximating models by
preprocessing of any use. This means that the annotations predicted by a good
P a must be among those that score high in P c, but we cannot insist on the
reverse property.

An especially interesting instance of this general framework case is a pre-
processor that chops the given sequence into smaller pieces, and then applies
specialized versions of a canonical interpreter to each sequence; this is an effec-
tive application of divide-and-conquer which may have significant influence on
time complexity. Consider a canonical model mc(A,S) where the annotation A
is of the form [t1 : A1, . . . , tk : Ak] where each ti indicates a specific subsequence
type and Ai an annotation of subsequence Si, where S = S1•· · ·•Sk; “•” denotes
concatenation. We assume that mc is implemented in terms of detailed models
mc

ti for the different types.
For the optimization of mc, we may introduce an auxiliary model mchop

producing a unique chopping into subsequences of claimed type and define an
approximation model as follows.

P a([t1 : A1, . . . , tk : Ak], S) =def p1 × . . .× pk

where
[t1 : S1, . . . , tk : Sk] =

argmax
[t1:S1,...,tk:Sk]

P chop([t1 : S1, . . . , tk : Sk], S)

pi = P c
ti(Ai, Si), i = 1, . . . , k

Notice that argmax for P a can be obtained by evaluating an argmax value for
each P c

ti
separately.

3.2 Estimating the Quality of an Approximating Model

In order to evaluate the quality of the approximating model respective to the
canonical model, we would ideally compare their respective predicted annota-
tions; but in particular the complexity of the canonical model prevents us from
doing so.

However, sampling provides us with samples 〈A,S〉 that we can analyze with
the approximating model and compare the result. Ignoring for the moment aux-
iliary annotations, we consider canonical and approximating models mc(A,S)
and ma(A,S), and suggest the following process to collect a set R of observed
ratios between probabilities for the annotation guessed by sampling and the one
found by approximation for the same sequence.

1. R = ∅
2. generate a sample mc(Ac, S),
3. let Aa = argmaxAa(P a(Aa, S))
4. insert P c(Aa, S)/P c(Ac, S) into R
5. goto 2, unless the designated time is exhausted

Notice at this point that probabilistic models often tend to assign unnaturally
high probabilities to short sequences, and if this is known to be the case for
mc(A,S), we may in this process discard any sequence of length below a certain
minimum.

We cannot present evaluation criteria that reflect a deep statistical analysis,
and we doubt that this is possible without detailed assumptions about a partic-
ular class of models. At present, we suggest a subjective analysis of the set of
ratios involving the following rules of thumb.

– A substantial segment of ratios greater that 1 may indicate that there is a
class of sequences, each of which has several good annotations with about
the same probability, and that the approximation is likely able to find one
of them in such cases.
(Obviously some observed ratios greater than 1 may be caused by mc sug-
gesting a very bad annotation, so such a single observation does not say
much about ma.)

– A substantial segment of ratios below but close to 1 may indicate that there
is a class of sequences, each of which has only few good annotations and that
the approximation is able to find them.

– A substantial segment of ratios far below 1 indicates that there is a class of
sequences for which the approximation is very inaccurate.

4 Case Study: A Simple Genefinder in PRISM

We sketch here a setup with a canonical model based on a SCFG, and an ap-
proximating model involving an auxiliary model that provides a unique splitting
into subsequences according to the principles outlined in section 3.1.

4.1 A Canonical Model

The model is based on a SCFG that describes a structure for genomic sequences
consisting of subsequences of genes and noncoding regions. Noncoding regions
are seen as unstructured sequences of random letters.

A gene is indicated by a start and a stop codon (one of {〈a, t, g〉, 〈g, t, g〉, 〈t, t, g〉}
and of {〈t, a, a〉, 〈t, g, a〉, 〈t, a, g〉}, respectively), and their lengths must be a mul-
tiple of 3 as to fit with a codon structure. Within a gene, the grammar indicates
possible two-dimensional structures of so-called hairpins. So for example, the
subsequence agata . . . tatct may form a hairpin, where the outermost 5+5 letters
form a stem and those indicated by the dots form a loop at the top; for simplicity
we do not allow recursive hairpin structures.

The grammar rules are straightforward and omitted; the hairpin structures
do not necessarily follow the codon structure so the grammar rules need to keep
track of substring lengths modulo 3. A given hairpin is as long as possible, i.e.,
attractor pairs are not allowed at the positions next to the two ends of the stem.

For a given sequence, this grammar may assign many different parse trees
due to the ambiguity caused by accidental triplets that are identical to start- and
stop codons, and there are likely alternative foldings into hairpins. Probabilities
in the model were set manually so as to keep sequence lengths sufficiently small
for our experiment.

4.2 An Approximative Model

As described in section 3.1, we provide an approximating model by an auxiliary
model that chops a sequence into subsequences classified as genes and noncoding;
it ignores any structure inside a gene, except that genes must be multiples of
3 and wrapped in proper start/stop codons. Subsequently these substrings are
analyzed with the well defined subgrammars of the canonical one for the two
subsequence types.

As described above, when the combined model is executed for prediction,
first the best chopping is found and fixed, and then the complex grammar rules
find best subtrees for each subsequence in isolation.

4.3 Evaluation by Sampling

We executed the procedure described in section 3.2 for generating samples and
finding the ratio of the canonical probabilities of the two annotations (here: parse
trees) given by sampling and by the approximating model. Due to performance
problems, we added a timeout for the parsing of the subsequences. We ended
up considering 18 samples of lengths between 20 and 150; shorter sample strings
were discarded.

It appears for one third of the samples, that the separation into subsequences
defined by the sampling procedure and by the chopper model are identical (or
very close to identical), represented by ratios above 0.99. In the remaining cases,
we observed ratios above 0.9. However, due to the small number of samples and

their short lengths, we cannot at present give any clear conclusions about the
quality of the chopper or the entire approximative model. With more substantial
test data we would expect fewer ratios of 1 and a few > 1.

5 Related Work

Bayesian networks, HMMs, and SCFGs are traditional methods for sequence
analysis that can be seen as instances of probabilistic-logic models; while their
flexibility for modeling and formal expressive power is far below the models we
are aiming at (PRISM and similar), there exists a plethora of efficient algorithms
and implemented systems; see [5] for background and overview. These provide a
catalogue of possible preprocessors to be used within our approach

More general and powerful formalisms have been suggested as extensions to
logic programs or equally expressive formalisms within the last 15 years, we
may mention PRISM [11, 12] that we have exemplified, Stochastic Logic Pro-
grams [10], Stochastic functional Programs [7], and Relational Bayesian Net-
works [6]. While such models have been used for systems biology, e.g., [3, 1],
the application to analysis of sequence data seems to be sparse, which we may
tentatively attribute to prejudices concerning efficiency in both time and space.

We may refer to [4] as a precursor of the present work, where similar ideas
are applied for a comparative test of three different genefinder programs [2, 8, 9].

6 Conclusion and Future Work

We advocate the use of probabilistic-logic models based on logic programs (or
similarly expressive languages) as the basis for analysis of biological sequence
data; due to flexibility and generality, such models are candidates for providing
better and more detailed finds than the currently most used methods, however,
this is still to be proved.

We intend that such models should be developed without consideration about
performance in order to document in a formal way and as faithfully as possible,
the available knowledge about the phenomena being modeled in what we called
a canonical model.

Using preprocessors, e.g., based on existing and efficiently implemented tech-
nologies, as a way to reach realistic execution times, we intend to get the best
of both worlds, flexibility and sophistication of the probabilistic-logic models
combined with feasible execution times.

Finally, we recommended heuristics for the evaluation of implemented and
approximating versions based on sampling and probability measurements, which
are basically the only computational usages that can be made of such canoni-
cal models. Although we described this method for implementations based on
probabilistic-logic technology, the evaluation method can be applied for any im-
plementation. Consider the example of section 4; here we can rebuild the ap-
proximating model using software specialized for SCFGs for both the chopping

and detailed analysis of substrings. We intend to extend the methodology with
a more firm statistically basis for evaluation of the measurements produced by
the sampling principle.

Acknowledgement: This work is supported by the project “Logic-statistic
modelling and analysis of biological sequence data” funded by the NABIIT pro-
gram under the Danish Strategic Research Council, and the CONTROL project,
funded by Danish Natural Science Research Council.

References

1. Marenglen Biba, Stefano Ferilli, Nicola Di Mauro, and Teresa Maria Altomare
Basile. A hybrid symbolic-statistical approach to modeling metabolic networks. In
Bruno Apolloni, Robert J. Howlett, and Lakhmi C. Jain, editors, KES (1), volume
4692 of Lecture Notes in Computer Science, pages 132–139. Springer, 2007.

2. Chris Burge and Samuel Karlin. Prediction of complete gene structures in human
genomic DNA. Journal of Molecular Biology, 268:78–94, 1997.

3. Jianzhong Chen, Stephen Muggleton, and Jose Santos. Abductive stochastic logic
programs for metabolic network inhibition learning. In Paolo Frasconi, Kristian
Kersting, and Koji Tsuda, editors, MLG, 2007.

4. Henning Christiansen and Christina Mackeprang Dahmcke. A machine learning
approach to test data generation: A case study in evaluation of gene finders. In
Petra Perner, editor, MLDM, volume 4571 of Lecture Notes in Computer Science,
pages 742–755. Springer, 2007.

5. Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological
Sequence Analysis. Cambridge University Press, 1998.

6. Manfred Jaeger. Relational bayesian networks. In Dan Geiger and Prakash P.
Shenoy, editors, UAI, pages 266–273. Morgan Kaufmann, 1997.

7. Daphne Koller, David A. McAllester, and Avi Pfeffer. Effective bayesian inference
for stochastic programs. In AAAI/IAAI, pages 740–747, 1997.

8. Anders Krogh. Using database matches with for HMMGene for automated gene
detection in Drosophila. Genome Research, 10(4):523–528, 2000.

9. A. Lukashin and M. Borodovsky. Genemark.hmm: new solutions for gene finding.
Nucleic Acids Research, 26(4):1107–1115, 1998.

10. Stephen Muggleton. Learning from positive data. In Stephen Muggleton, editor,
Inductive Logic Programming Workshop, volume 1314 of Lecture Notes in Com-
puter Science, pages 358–376. Springer, 1996.

11. Taisuke Sato and Yoshitaka Kameya. Parameter learning of logic programs for
symbolic-statistical modeling. J. Artif. Intell. Res. (JAIR), 15:391–454, 2001.

12. Taisuke Sato and Yoshitaka Kameya. Statistical abduction with tabulation. In An-
tonis C. Kakas and Fariba Sadri, editors, Computational Logic: Logic Programming
and Beyond, volume 2408 of Lecture Notes in Computer Science, pages 567–587.
Springer, 2002.

