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Abstract. Signal transduction networks (STN), as complex biological
systems, are crucial for inter- and intra-cellular signaling. The essence
of STN is underlain in some signaling features scattered in various data
sources, and the biological components overlapping among STN. The in-
tegration of those signaling features presents a challenge. In this paper,
we introduce an effective method that combine various signaling data
features, and detect out the components overlapping among STN. This
work has two main contributions. Many structured data of signaling fea-
tures, i.e., protein-protein interaction networks, domain-domain interac-
tions, signaling domains, and protein functions, have been extracted and
combined to comprehensively construct STN. Those heterogenous data
are known to be significant and useful in STN construction. The uncer-
tain components overlapping among STN have already been found, using
soft-clustering. We did the experiments with five biological processes in
the Reactome database. Those processes were reconstructed with small
errors. The experiment results were promising to discover new STN in
system biology.
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1 Introduction

Signal transduction networks are the primary means by which eukaryotic cells
respond to external signals from their environment as well as coordinate complex
cellular changes [1]. STN are important in the correct functioning of the cell and
producing appropriate outcomes, such as cell division, apoptosis, or differenti-
ation in response to a variety of biological signals. The dominant molecules in
STN are proteins, which have several signaling features. To transmit biological
signals in cells, those proteins need interactions as signaling channels among
them. Therefore, a STN can be considered as a complex protein interactions.



Because of the biologically significant roles of STN in cells, both biologists and
bioinformaticians have taken much interest in finding out molecular components
and/or the relations among these molecular components in STN. Experimental
methods have been effective in generating detailed descriptions of specific linear
signaling pathways; however our knowledge of complex signaling networks and
their interactions remains incomplete [2]. Recently, an enormous amount of high-
throughput protein-protein interaction (PPI) data has been generated [6], [8].
The available PPI data is one of important signaling feature data, and invaluable
to study STN. There is a great need for developing computational methods to
take advantage of information-rich protein interaction data to study complex
signaling mechanisms inside STN.

Constructing STN based on PPI is an area of much ongoing research. Gomez
et al. modeled STN in terms of domains in upstream and downstream protein in-
teractions, using Markov chain Monte Carlo method [5]. Steffen et al. developed
a computational method for generating static utilized PPI maps produced from
large-scale two-hybrid screens and expression profiles from DNA micro-arrays in
STN construction [11]. Liu et al. applied a score function that integrated PPI
data and micro-array gene expression data for predicting the order of signal-
ing pathway components [8]. Concerning protein modification time-course data,
Allen et al. applied a method of computational algebra to modeling of signaling
networks [1]. Fukuda et al. represented the model of signal transduction path-
ways based on a compound graph structure [4]. One of recent work proposed
some cost functions to search for the optimal subnetworks (as STN) from PPI
[12].

Although the previous work achieved many results, there are some biolog-
ical characteristics of STN, which did not take much into account. Firstly, it
is known that the deep level underlying the PPI to transmit signals are func-
tional domains, the so-called signaling domains, and their interactions [3], [10].
The data regarding those significant signaling features are structured, complexly
relational, and sparse in various data sources. In order to construct STN effec-
tively, those data is needed to be appropriately integrated. Second, STN indeed
have many overlapping components, including proteins and their interactions
[9]. This work aims to solve those two intricate problems of STN to better con-
struct STN from PPI networks. To this end, we developed an effective computa-
tional method to construct STN that (1) integrated multiple signaling features
of STN from heterogenous sources, i.e., protein-protein interactions, signaling
domains, domain-domain interactions, and protein functions; and (2) detected
the overlapping components using soft-clustering. Additionally, in previous work
an clustered object was often an individual protein, but our method handled a
clustered object as a functional or physical protein interaction (as the signaling
means).

We evaluated the performance of the proposed method, using human pro-
tein interaction network extracted from the Reactome database. Five complex
biological processes in the Reatome database were tested by our method. The
experimental results demonstrated that our method could reconstruct those five



processes with small errors and detect nearly the exact number of overlapping
components. To the best of our knowledge, this work is the first one that com-
putationally solves the STN problem for Homo Sapiens. The preliminary results
open a prospect to study other problems related to complex biological systems
in Homo Sapiens.

The remainder of the paper is organized as follows. In Section 2, we present
our proposed method to construct STN using soft-clustering and multiple sig-
naling feature data. The evaluation is given in Section 3. Finally, Section 4 give
some concluding remarks.

2 Method

The proposed method has two main tasks. The first one is to extract and pre-
process signaling feature data from various data sources. Those relational data
in heterogenous types were then weighted and normalized by some proposed
functions. The second is to combine extracted data and cluster protein-protein
interactions into STN using soft-clustering. Two subsections, 2.1 and 2.2, de-
scribe two mentioned tasks in succession.

2.1 Extracting signaling feature data from multiple data sources

STNs have a two-level signaling machinery. The first level of complexity in cel-
lular signaling derives from the large number of molecules and multiple types of
interactions between them. The second level of complexity of signaling biochem-
istry is apparent from the fact that signaling proteins often contain multiple
functional domains, thus enabling each to interact with numerous downstream
targets [3]. Based on those facts of STN, we extracted a lot of signaling feature
data as follows.

1. Protein-protein interactions (PPI): the upper level consists of the compo-
nents as interfaces to transmit signals. PPI data were extracted from the
Reactome database4.

2. Domain-domain interactions (DDI): the deep level consists of interactions
of protein domains, which are the basic elements in PPI. DDI data were
extracted from the iPfam database5.

3. Signaling domain-domain interactions: the deeper functional level consists
of signaling domains (specific functional domains) that act as key factors
to transduce signals inside STN. Signaling DDI data were extracted from
SMART database6 and referred in [10].

Protein function were also extracted from Uniprot database7 as keywords tagged
to proteins).

4 www.reactome.org/
5 www.sanger.ac.uk/Software/Pfam/iPfam/
6 smart.embl-heidelberg.de/
7 www.uniprot.org/



The raw data in different databases are stored in different types, e.g., the
numerical type for number of PPI, interaction generality, number of signaling
DDI or categorical type for protein functions. Those data have the complex
relations. For example, one protein may have many PPI and one PPI may have
many DDI. Interacting partners of one DDI may be a signaling domain or not.
To exploit those relations, after extracting data from multi-data sources, we
weighted and normalized by some proposed weight functions. Table 1 shows the
functions and their corresponding explanations.

Table 1. Weight functions for the extracted signaling features.

Weight functions Notations and explanation

gij : Interaction generality, the number of proteins that interact
with just two interacting partners, pi and pj .

wppi(pij) =
g2

ij

ni∗nj
ni: The number of protein-protein interactions

of the protein pi.

nSddi: The number of signaling domain-domain

wSddi(pij) = nSddi+1
nddi+1

interactions shared between two interacting proteins.

nSddi: The number of domain-domain interactions
shared between two interacting proteins.

wfunc(pij) =
k2

ij

ki∗kj
kij : The number of sharing keywords kij of two interacting

partners, pi and pj .
ki: The number of keywords of the protein pi.

– PPI weight function (wppi): The topological relation of proteins in a PPI
network was extracted in terms of the numbers of interactions of each partner
and the interaction generality.

– Signaling DDI weight function (wSddi): The relation between a PPI and
their DDI was exploited in terms the numbers of DDI and the numbers of
signaling DDI, which mediate the PPI.

– Keyword weight function (wfunc): The relation of a PPI and protein func-
tions was taken into account in terms of the keywords tagged in each partner
and the keywords shared between them.

2.2 Combining signaling feature data to construct STN using
soft-clustering

After weighting signaling features, it is necessary to combine them in a unified
computational scheme to take full advantage of those data. We integrated these
data and represented them in forms of feature vectors. Every PPI has its own
feature vector, which has three elements corresponding to three features, vij

= {wppi, wSddi, wfunc}. Subsequently, we employed a soft-clustering algorithm
to cluster the PPI based on their features vectors. Soft-clustering can construct
STN and detect the overlapping components that can not be found by traditional



hard-clustering. Note that we used the Mfuzz software package [7] to implement
fuzzy c-means (FCM) clustering algorithm in our experiments. Fuzzy c-means
(FCM) clustering algorithm is one of popular soft-clustering algorithms.

Figure 1 summarizes the key steps of our method that does (1) extracting
and weighting signaling features and (2) integrating the extracted features and
cluster PPI into STN, using a soft-clustering algorithm. Given a large protein-
protein interaction network N, the outputs are STN, which are considered as the
subgraphs of edges (as protein interactions) and nodes (as proteins). Step 1 is to
obtain the binary interactions from the protein-protein interaction network N.
Steps 2 to 5 are to carry out the first task, extracting and then weighing signaling
feature data by the functions shown in Table 1. These steps are done for all
binary PPI to exploit the relations between PPI and signaling features. Step 6 is
to perform the second task, combining weighted feature data, representing them
in forms of feature vectors vij = {wppi, wSddi, wfunc}. Step 7 is to soft-clustering
PPI with their feature vectors into STN S. Finally, STN S are returned in Step 8.

Figure 1 The proposed method to construct STN from PPI networks using soft-
clustering and multiple signaling feature data.

Input:
Protein-protein network N.
Set of signaling features F ⊂ {fppi, fSddi, ffunc}.

Output:
Set of signal transduction networks S.

1: Extract binary interactions {pij} from the protein-protein network N. P := {pij}.
2: For each interaction pij ⊂ P
3: Extract and formalize data for the feature PPI fppi

4: Extract and formalize data for the feature signaling DDI fSddi

5: Extract and formalize data for the feature function ffunc

6: Combine and represent the all features in the feature vectors vij = {fppi, fSddi,
ffunc}.

7: Apply a soft-clustering algorithm with the set of feature vectors {vij} to cluster
interactions pij into signal transduction networks S.

8: return S.

3 Evaluation

To evaluate the performance of the method, we considered a complex PPI net-
work to detect STN out of other biological processes. The tested PPI network
does contain not only signaling processes, but also other biological processes
functioned inside the PPI network. The mixture of the diverse processes in a
PPI network is popular in cells. The experimental results are needed to reflect
this complicated phenomena. Namely, the signaling processes are reconstructed
with small error and the overlapping components are detected out. We extracted
five heterogeneous processes from the Reactome database and the results demon-
strated that our method effectively constructed STN from the PPI network with
their overlapping components.



3.1 Experiments

The Reactome database consists of 68 Homo sapiens biological processes of 2,461
proteins. There are 6,188 protein interactions, and 6,162 interactions participat-
ing in biological processes. 636 proteins partakes in at least 2 different processes,
400 proteins in at least 3 processes, 119 proteins in 5 processes. Therefore, we can
see that there exists a lot of proteins and their interactions overlapping among
biological processes.

In our experiments, we extracted a group of five biological processes and two
of them are signaling processes. Table 2 shows some information related to those
five processes. In total, this group consists of 145 distinct interactions of 140
distinct proteins. There are many interactions and proteins overlapping among
the processes.

Table 2. Five tested biological processes and some related information.

Reactome annotation Description #Proteins #Interactions

REACT 1069 Post-translational protein modification 40 23
REACT 1892 Elongation arrest and recovery 31 68
REACT 498 Signaling by Insulin receptor 39 44
REACT 769 Pausing and recovery of elongation 31 68
REACT 9417 Signaling by EGFR 40 25

The proteins partaking in five processes were extracted and looked for their
interactions in the Reactome interactions set. We strictly extracted only the
interactions that have both interacting partners joining in processes because
the method considers the proteins but more importantly their interactions. The
extracted interactions and their signaling features were then input in the soft-
clustering algorithm.

In this paper, we applied the Mfuzz software package to run fuzzy c-means
(FCM) clustering algorithm. It is based on the iterative optimization of an ob-
jective function to minimize the variation of objects within clusters [7]. As a
result, fuzzy c-means produces gradual membership values µij of an interaction
i between 0 and 1 indicating the degree of membership of this interaction for
cluster j. This strongly contrasts with hard-clustering, e.g., the commonly used
k-means clustering that generates only membership values µij of either 0 or 1.
Mfuzz is constructed as an R package implementing soft clustering tools. The
additional package Mfuzzgui provides a convenient TclTk-based graphical user
interface.

Concerning the parameters of Mfuzz, the number of clusters was 5 (because
we are considering 5 processes) and the so-called fuzzification parameter µij was
chosen 0.035 (because the testing data is not noisy).

3.2 Results and Discussion

Actually, two processes REACT 1892 and REACT 498 share the same set of
proteins and the same interactions as well. Also, two signaling processes, RE-
ACT 9417 and REACT 498 have 16 common interactions. Nevertheless, the



process ‘post-translational protein modification’ is separated from the other pro-
cesses. The complex STN were effectively constructed and the overlaps among
STN were detected.

We set a threshold ε as 0.1. The threshold ε means that if the membership of
an interaction i with a cluster j µij ≥ ε (0.1), this interaction highly correlates
with the cluster j and it will be clustered to cluster j. Five clusters were produced
and then matched with 5 processes. The results are shown in Table 3.

Table 3 shows that we can construct signal transduction networks with the
small error and can detect the nearly exact number of overlapping interactions.
The combination of signaling feature data distinguished signaling processes from
other biological processes, and soft-clustering detected the overlapping compo-
nents among them. When we checked the overlapping interactions among the
clusters, there were exact 16 interactions that are shared in two signaling pro-
cesses ‘signaling by Insulin receptor’ and ‘signaling by EGFR’. Also, the same
interaction set of the process ‘elongation arrest recovery’ and the process ‘paus-
ing and recovery of elongation’ are found in their clusters. In fact, REACT 1069
does not overlap other processes but the results return three overlapping inter-
actions, i.e., one with REACT 1892 and REACT 769 and two with REACT 498
and REACT 9417.

Table 3. Clustered results for five tested biological processes.

Process True positive1 False negative2 False positive3 #Overlap Int4

REACT 1069 0.565 0.174 0.435 3/0
REACT 1892 1.000 0.103 0.000 70/68
REACT 498 0.818 0.068 0.182 17/16
REACT 769 1.000 0.103 0.000 70/68
REACT 9417 0.960 0.120 0.040 17/16

1 True positive: the number of true interactions clustered/the number of interactions
of the fact process.

2 False negative: the number of interactions missed in fact processes/the number of
interactions of the fact process.

3 False positive : the number of false interactions clustered/the number of interactions
of the fact process.

4 #Overlap Int: the number of overlapping interactions among the clusters/the num-
ber of overlapping interactions among the fact processes.

We analyzed interaction (P00734, P00734) shared among REACT 1069, RE-
ACT 498 and REACT 9417. Protein P00734 (Prothrombin) functions in blood
homeostasis, inflammation and wound healing and joins in biological process as
cell surface receptor linked signal transduction (have GO term GO:0007166). In
the Reactome database, interaction(P00734, P00734) does not happen in the
processes REACT 498 and REACT 9417, however according to the function of
P00734, it probably partakes in one or two signaling processes REACT 498 and
REACT 9417.

Although, the experiment carried out a case study of five biological processes;
the proposed method is flexible to be applied to the larger scale of human in-



teraction networks. In the intricate relations of many biological processes, the
proposed method can well construct signal transduction networks.

4 Conclusion

In this paper, we have presented a soft-clustering method to construct signal
transduction networks from protein-protein networks. Many structured data of
signaling features were extracted, integrated, using soft-clustering. The exper-
imental results demonstrated that our proposed method could construct STN
effectively. The overlapping components among STN were well detected. In fu-
ture work, we would like to further investigate signaling features of proteins and
protein interactions. The experiments with various parameters and other soft-
clustering algorithms (not only FCM algorithm in Mfuzz) should be tested. We
will consider some other methods in relational learning and statistical learning to
improve the work. It is also promising to discover the novel signal transduction
networks from large interaction networks.
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