
On The Design of Knowledge Discovery Services

Design Patterns and Their Application In A Use

Case Implementation

Jeroen de Bruin1, Joost N. Kok1, Nada Lavrac2 and Igor Trajkovski3

1 LIACS, Leiden University, Leiden, The Netherlands
2 Jozef Stefan Institute, Ljubljana, Slovenia

3 New York University Skopje, Skopje, Macedonia

Abstract. As service-orientation becomes more and more popular in
the computer science community, more research is done in applying
service-oriented applications in specific fields, including knowledge dis-
covery. In this paper we investigate how the service-oriented paradigm
can benefit knowledge discovery, and how specific services and the knowl-
edge discovery process as a whole should be designed. We propose a
model for the design of a service-oriented knowledge discovery process,
and provide guidelines for the types of functionalities it requires. We
also provide a case design to show the application and benefits of the
proposed model and design pattern in practise.

1 Introduction

Knowledge Discovery (KD) in data can be a very intensive process in terms of
computation and data transport, but also because the construction of a KD pro-
cess can be quite difficult and time-consuming. Over time, many have tried to
find ways to improve the quality of KD processes, for example by making them
faster, easier to construct and/or less data intensive. When new technologies
appear, it is interesting to see how they can be applied to improve performance
in these areas.

In this paper we take a look at the Service Orientation (SO) paradigm and
in what ways it can benefit KD. The SO paradigm allows users to design ap-
plications (in this context we will see a KD process as an application) in terms
of individual components than can be connected to each other through stan-
dardized communication. These components can be either locally or remotely
available, and can be found through public lookup facilities. The potential of
the SO paradigm can make KD processes easier, faster, more understandable.

The focus of the SO paradigm has primarily been on bussiness components
and the construction of distributed corporate applications, but SO seems to be-
come quite predominant in the scientific world as well. In this paper we explore
the benefits and drawbacks of the SO paradigm in KD, mainly focussing on the
design of a KD service and process. We support the design theories by a small
case study of two components, which are combined together to form a KD pro-
cess.



This paper is organized as follows: In Section 2 we discuss diverse work re-
lated to service-oriented knowledge discovery, work that we used to generate
ideas for research and that we compared to our own ideas. In Section 3 we dis-
cuss SO technology, thereby discussing standards and potential advantages in
a scientific context. In Section 4 we discuss the design of the case study, and
provide guidelines in the design of KD processes and indiviual components. In
Section 4 we discuss the case study trial runs and give a few statistics in terms of
performance compared to other implementations. Finally, in Section 5 we draw
some conclusions on the implications of the use of SO in KD, and discuss some
future work.

2 Related Work

Over the last few years distributed KD has become increasingly more popular,
which generated research incentives in diverse fields of technology. In [DBG+06]
distributed data mining is proposed by using peer-to-peer networks. The authors
sketch a high-level introduction to peer-to-peer data mining and give some point-
ers and requirements for methods, as well as a theoretical example. However, a
comparison with other techniques lacks, as does technological depth or formal
models. The authors of paper [AC06] focus on the area of text mining, and give
criteria and requirements which need to be supported by good text mining tools.
While they focus on their tool being embedded in other applications and address
issues such as security and statelessness, they seem to only brush the topic of
service orientation and web services as part of the tool, and present restrictions
and not solutions. In [CZW+06] the authors take a view quite similar to ours,
but use Business Process Execution Language for Web Services (BPEL4WS) to
achieve stateful long running interactions, and focusses on data security through
gaussian models, while our focus lies on the design principles of web services
itself within service-oriented knowledge discovery. Finally, [GJF06] describes a
framework in which web services are used for knowledge discovery in databases,
and describes the framework indepth, as well as supported algorithms, but not
the web service design and construction methodology, and thus serves as a useful
complement to this paper.

3 Background

In this section we discuss the SO paradigm, and present its benefits with respect
to KD processes. We also discuss current standards in the SO paradigm. These
standards will be used in the design and implementation of the use case, which
will be presented in Section 3 and Section 4.

The SO paradigm is expressed in a Service-Oriented Architecture (SOA)[Gro].
A SOA is a layered architectural style that supports SO, where SO is a way of
thinking in terms of services and service-based development and the outcomes of
services. In practise, SOA is a distributed architecture that allows a user to build
an application by means of composing individual components that potentially



exist across separate (physical or logical) domains. These components are called
web services [HD06] An overview of SOA is shown in Figure 1

Fig. 1. SOA Layers

Without going into too much detail, there are a few key points in Figure 1 that
we would like to draw attention to. First, notice how in the service provider lay-
ers service components can consist of not only custom software, but also existing
solutions. This is possible because of the standardized messaging and interface
formats that are part of the SOA specification. SOA incorporates a methodology
that is called design by contract [Mey92]. In this methodology, implementation
is decoupled from a program’s interface, whereby and interface is an annotation
of the service’s functionality that serves as a contract between the service user
and the service provider.

A widely used standard for defining web service interfaces is the Web Service
Description Language (WSDL) [W3Cb]. WSDL is an XML-based standard that
describes for each web service how the service handles incoming messages, what
type of service it is, what kind of parameters it supports, and how the service
interface is connected to the underlying implementation. We discuss WSDL in
more detail in the next section.

Another area of interest are the service consumer layers. Notice that applica-
tions are no longer constructed but instead composed by putting together indi-
vidual web services. This composability is partly the merit of the standardized
interfaces, but also because SOA is message-oriented; communication between
individual components proceeds through the use of uniformly defined messsages.
A standard that is often used for web service message transport is the Simple
Object Access Protocol (SOAP)[W3Ca], which is an XLM-based message format
and transport protocol. Using both standardized ways of accessing and messag-
ing makes an application decomposable into distinct, uniformly accessable units



of computation and processing, which allows for remote computing.
Finally, the last point of interest is the middle layer called the services layer.

In this layer the interfaces of the web services are offered to the consumers who
search for their underlying functionality. For a user it is impossible to know the
location of each service, and similarly for a provider it is impossible to know
the location of all its users. To meet both demands, the Universal Description
Discovery and Integration (UDDI)[Dra] facility was created, which is a registry
for web services offered by service providers containing all WSDL documents
corresponding to interfaces of those services.

With all these protocols, standards and facilities in place, there are a plethora
of advantages to be gained in the KD context. We summarize a few below:

– Easier KD process setup
A scientist usually perceives a KD process as a workflow where data is con-
tinually modified in discrete computational steps. By using SOA and web
service composition, the scientist’s mental model is more closely approached.
Process composition becomes even easier with the use of tools that offer
a GUI like Taverna [MyG]. By offering the scientist an environment that
matches his conceptual model of a KD process, the process becomes easier
to understand and compose.

– Easier KD process modification
Since web service interfaces are decoupled of their implementation, a user
only needs to rely on the interface. If another webservice is available that
adheres to the interface, that service could replace the forementioned one in
a process without the need for any additional modification by the user.

– Increased component availability
When a scientist searches for the solution of a specific step in his KD process,
it might occur that an implementation is hard to find. With the UDDI in
place, a scientist has a central location where specific solutions can be found.
This reduces the time of process setup, and increases the chances of finding
a solution.

– Increased Performance
Since SOA and all related protocols are platform-independent technologies,
each platform can potentially support it. This makes it easier for the service
provider to use an implementation environment that is best suited for the
web service, perhaps on specialized hardware which normally would not be
available to the users. Moreover, if two services can be executed indepen-
dently and are located on different physical domains, they can be executed
in parallel.



4 Service-Oriented KD design

In this section we discuss the SO design model and patterns that we used to
create the case study, and examine how these SO principles influence individual
services and KD processes on a whole. First we discuss WSDL a bit more and
explain how the standard influenced the design of the web service. After that,
we discuss a design model for SO KD processes. Finally, we present guiding
principles for individual KD service design, which were also used to design the
use case.

4.1 WSDL and design implications

There are many views on the design of a KD process, ranging from a global
view stating what functionality a service in a process has and what standard to
use to design and implement it, to microdetails such as what message format to
use. Since the use case was designed by using WSDL, this influences our further
design of a web service and a KD process as a whole. In this paper we focus on
the different operation types that are defined in WSDL, and its influence on the
design of KD process and a KD service:

– Request/Response
In this case, the client sends a message to the service, and the service sends
a message to the client in response. This is the message equivalent of a func-
tion call.

– Solicit/Response
This is the reverse case of the Request/Response type. The service sends a
message to the client, and the client sends a message to the service in re-
sponse. This is often used when a service needs to poll clients.

– Client messenger
Here, the client sends a message but does not expect a message in return.

– Server notification
Server notification is the exact opposite of the client messenger type. In
this case, the service sends a notification to the client without expecting or
waiting for an answer.

As we shall see in the remainder of this section, operation types have an inpact
on the entire KD process, so selecting the right type of operation is important
in order to obtain a process with optimal performance.

4.2 KD process design

A KD process can be seen as a workflow, whereby data flows from one unit of
processing to another. Conceptually we try to map these unists of processing



to web services. How successful this can be done depends on the understanding
of the process and the functional discreteness of individual steps. We see the
design of a KD process as a three-dimensional challenge containing the Logical,
Funtional and Relational views, that al influence each other. We propose the
following KD process design model for SO that incorporates all these views,
which is illustrated in Figure 2 and described below. By applying this model
in the design of an SO KD process, a better understanding of the process is
achieved, which leads to a better design, until both understanding and design
are optimal.

Fig. 2. KD process in SO

– Logical view
In this view, the entire KD process is being examined to identify all services
and relations in the process. This logical view is not only guided by the
designer’s expertise, but also on the services already available, for example,
services built earlier or services publicly available through a UDDI. Ideally
all services fit together perfectly and are all available, but this is rarely the
case. Therefore, choices have to be made if readily available services should
be used, and how the unavailable process parts should be logically parti-
tioned. Since different partitionings of a KD process yields different services
and relations, the partitioning will affect the functionalities of each service
as well as the relations among them.



– Functional view
For each service identified all functionalities are recorded. These functinali-
ties will serve as a guideline for interface design and operation type selection,
and will determine the nature of the relations with other functionalities. In
this stage similarities between services and dissimilarities within services can
be uncovered on the basis of functionality, leading to a possible joining or
splitting of services.

– Relational view
In this aspect of design, relations should be identified for each service with
other functionalities in other services. These relations should be annotated
in two dimensions: direction and usage type. The direction indicates if mes-
sages will be flowing from a service or to a service, the usage type indicates
if the relation is used only once, or continually until processing is done. Both
dimensions will influence the functionality of a service, the operation type
of the functionality’s interface, and the content and format of the messages
that will be transported. Similarities and dissimilarities in relations amongst
services might also lead to a revision of the service partitioning.

– Matching
This dimension is the feedback step of the model, and matches the outcome
of all other phases to one another. It serves as a feedback phase for the design,
and indicates if service partitionings, functionalities or relations should be
modified or adapted in case of a mismatch.

4.3 KD service design

In this part we focus on the functionality design of a KD service, and how the
design choices are expressed in the WSDL operation types.

As stated earlier, KD processes can be very time-consuming, especially when
large data volumes are involved. This means that any error may result in the loss
of a great amount of time. Therefore, individual KD services should be designed
for interaction; A scientist should get regular feedback on the progress of the
process, and should at all time be able to interact with the process.

We also mentioned that a KD process is often perceived as a workflow, a
sequence of computational steps whereby data flows from one step to another.
This does not mean, however, that one step should be completed in order for
the next step to begin; the results that come from these actions sometimes can
already be transferred to the next process phase without waiting for the service
to finish processing all the data. To optimize performance as well, KD services
functionality should be designed for streaming data where possible.

Having observed the facts stated above, we divided the functionalities of a
KD service into three categories: Initialization, Feedback and Enactment. This
classification forms a guideline for the design of a service’s functionality using
WSDL.



– Initialization
Procedures designed in this class are expected to handle a continuous stream
of messages that initialize this part of the experiment. Client messagers are
usually best suited for these functions, unless initialization requires critical
feedback, in which case Request/Response should be used.

– Feedback
In this category methods need to be designed that provide feedback to the
service client. Both Notification or Solicit/Response method types can be
used here, depending on if the feedback is used purely for informative pur-
poses or if it is used to steer an interactive experiment through client inter-
vention. Feedback is often provided iteratively, sending messages whenever
an event occurs.

– Enactment
This category combines the actual functionalities of the service with the
feedback functionalities that report on the service’s progress. Since an ex-
periment usually is expected to return a result, a Request/Response type
method is usually chosen. However, if one does not need to wait on this
service in order to continue with other processing steps, a combined Client
messager and Server notification procedure could be used to let the service
run asynchronously. Note that enactment can be done both atomically or
iteratively, as we will see in the next section.

5 Use Case

In this section we present the use case. For our case study we implemented a
KD scenario described in [TZTL06]. In this scenario two classes of leukemia are
compared with each other. The microarray dataset from Golub et al. [GST+99]
is processed to identify differentially expressed genes per class, based on a thresh-
old score computed by the student’s t-test. This set of differentially expressed
genes, together with a selection of their non-differentially expressed counterparts
(both expressed in Entrez id’s [MOPT05]), are then annotated with terms from
the Gene Ontology (GO)[GO]. In the final step these annotations, together with
information about interaction amongst genes, are combined to find subgroups.
We extended this scenario to also include the Kyoto Encyclopedia of Genes and
Genomes (KEGG)[KEG] ontology, and used a tree-like rule miner that induces
rules on the basis of maximal subsets that satisfy the user-defined support con-
straints.

We designed the use case using the model discussed in the previous section
and compared it to the original design. Both implementations are done in C-
sharp that use a C++ .Net back-end, using WSDL as an interface definition
language, and use SOAP as transport protocol. All services and algorithms are
performed on Microsoft Windows XP using an Intel Centrino duo processor
1.66GHz, and 1GB of main memory.



5.1 Use case process design

– Logical view
In the use case we identified two different web services that are used together
to provide one composite service. The first service is the GeneSelector ser-
vice that is used to compute a t-scores for all genes in the microarray data,
and place it either in the differential or non-differential collection. The sec-
ond service is the GeneRuleInducer service which takes the two lists and
produces rules that describe subsets of these lists that share the same terms
in the GO and KEGG ontology, which are also provided in the rule.

– Functional view
Per service we identify functionalities divided in the three forementioned
categories.
• GeneSelector

Initilialization functionalities

∗ Probe mapper : Each row of the microarray data is annotated per
probe and not per gene, so probes need to be mapped to entrez gene
id’s.

∗ Class mapper : Each column of the microarray data is annotated with
a label and not a class, so labels need to be mapped to classes.

∗ Cutoff initializer : Initialises the t-score cutoff value for genes.

Feedback functionalities

∗ Probe Feedback : When a probe does not match any gene, a message
is sent to inform on this.

∗ Class Feedback : When a label does not match a class, a message is
sent.

Enactment functionalities

∗ T-test calculator : With help of both mappings, t-test value for a gene
per class is computed and compared with the supplied cutoff.

• GeneRuleInducer
Initilialization functionalities

∗ Gene loader : Loads genes and their scores in the ontology tree-
mining structure.

∗ Support constraint initializer : Initilaizes the minimum and maximum
support constraints.

∗ Ontology loader : Loads the ontology in a tree-structure.
∗ Gene to ontology mapper : Loads the data that maps gene id’s to

ontology keys.
∗ Gene interaction mapper : Loads the data that specifies interaction

between genes.

Feedback functionalities



∗ Gene List feedback : When something is wrong with one of the lists,
the user is sent a message that specifies the problem and the per-
formed action.

∗ Rule feedback : Presents periodical feedback on the progress of the
rule miner.

Enactment functionalities

∗ Rule miner : Using the internal tree-structure of the ontologies which
are annoted with differential and non-differential genes, rules are un-
covered that satisfy the minimal differential support constraint and
the maximal non-differential support constraint.

– Relational view
Here we specify relations and if they are iterative or not. Iterative relations
are denoted with *.
Client to GeneSelector relations

• Probe map input : Message containing probe and gene id’s. Only needs
to be supplied once.

• Class map input : Message containing classes and labels. Only needs to
be supplied once as well.

• Cutoff input : Message containing the user-defined t-score cutoff.
• Data input* : Message containing a probe identifier and expressions per

label.

GeneSelector to Client relations

• Probe map feedback output* : Message that returns a problem with the
probe mapping.

• Class map feedback output* : Message that returns a problem with the
class mapping.

GeneSelector to GeneRuleMiner

• Data return output* : Message that returns the score of the gene and if
it’s in the differential set or not.

Client to GeneRuleMiner

• Differential support input : Message that supplies the cutoff for the min-
imal number of differential genes a rule has to support.

• Non-differential support input : Message that supplies the cutoff for the
maximal number of non-differential genes a rule may to support.

• Enactment input : Message that enacts the mining process.

GeneRuleMiner to Client

• Gene list feedback output* : Message specifying feedback if anything goes
wrong loading the specified lists.



• Rule miner output : Message that returns rules uncovered by the algor-
tihm.

A complete overview of service connectivity and data flow is presented in Fig-
ure 3. Note that only those functionalities that require interaction with the user
or another service are displayed.

Fig. 3. SO KD use case design

5.2 Use case process comparison

The original process was divided in the same service partitioning as the one that
our model yielded, but processing of individual services was done one by one,
and results did not transfer before processing was completed. Furthermore, in
the original implementation feedback was not supplied upon occurence of the
event, but as a return value after processing, which is a less interactive way. A
complete list of differences per service are listed in Table 1 and Table 2

Category Original process Use case process

Service feedback as return values iterative on occurence of event
Service initialization Supplied as a whole Iterative data supply
Service processing all per element
Service outputs at end of processing continuous outputting per element

Table 1. Design differences in GeneSelector service



Category Original process Use case process

Service feedback as return values iterative on occurence of event
Service initialization Supplied as a whole Iterative data supply
Service processing all all
Service outputs at end of processing at end of processing

Table 2. Design differences in GeneRuleMiner service

Finally, we took some benchmarks for the performance of the original process and
the re-designed use case. As input for the selector we took respectively cutoffs
of t-score 15, 10 and 8. For the GeneRuleMiner, we took supports of minimally
10% differential genes and maximally 5% non-differential genes. Results of the
original process are displayed in Table 3, and those of the re-designed use case
are in Table 4. Note that the measurements of each phase in the table indicate
after how much time since the process started this phase ended. All measure-
ments are averages over 50 consecutive runs, and are min milliseconds. Since in
the GeneRuleMiner processing is no speedup to be gained due to the return of
all results at once, we only show the benchmarks of the phases preceeding the
GeneRuleMiner processing phase.

Phase Cutoff 15 Cutoff 10 Cutoff 8

GeneSelector initialization 74 69 73
GeneSelector processing 1331 1291 1328
GeneRuleMiner initialization 3388 7122 13318

Table 3. Benchmarks of the original process

Phase Cutoff 15 Cutoff 10 Cutoff 8

GeneSelector initialization 73 69 74
GeneSelector processing 1260 1228 1257
GeneRuleMiner initialization 2139 5841 11998

Table 4. Benchmarks of the re-designed use case

To make the difference between the original process and the re-designed use case
more clear, consider Figure 4. Here, the cutoff 15 scenario was worked out more
thoroughly. The top part displays how the original process parts consecutively
get processed. The bottom part shows how the re-designed process part itera-



tively get processed in parallel where possible.

Fig. 4. Benchmark comparison of t-score 15 cutoff process

6 Conclusions and Future Work

In this paper we discussed the design of KD processes in an SO environment.
We discussed the SO technology and related standards, and showed how KD
processes can benefit from SO technology; It makes process setup and modifica-
tion easier, increases component availability, and can potentially have a positive
inpact on performance.

By designing a SO KD process workflow using a design model that combines
logical, functional and relational views, a better understanding of a KD process
can be gained iteratively due to the matching and mismatching of entities in
these views, whereby each iteration yields a better SO KD process design and
a closer match of relations, services and functionality. An important factor that
influences the partioning of services are the services already available, thereby
promoting software reuse.

When designing individual services in KD, interaction and feedback are im-
portants aspects to keep in mind. Interaction and regular feedback are important
for the scientist to steer the KD process in a correct way, for KD processes are
often time-consuming and thus any process incorrectly set up could possibly
result in a considerable loss of time. Another important aspect is performance
through paralellization. Since web services can be distributed across different
logical or physical platforms, their execution could possibly proceed in a parallel
fashion. To support paralellism, streaming data is preferred over monolithic data
transport where possible. By combining these aspects and the functionality types
in WSDL, we created a guideline for the design of a KD service’s functionality
that is otimized for streaming data where possible and incorporates the need for
feedback.



To illustrate the merits of SO and our developped design model and guide-
lines, we implemented a use case according to our model, and compared it to
a web service implementation using monolithical data transfer and periodical
step-by-step execution. In some cases, processing times for the initialization of
a process were reduced up to 37%, and with 22% on average.

The design principles stated in this paper are but a minor step to incorpo-
rating SO technology in the field of KD. However, by assuring that the design
of a KD process and individual services is optimized for feedback and paralel-
lism, a researcher can enact a process and conclude it successfully with minimal
error and maximal performance. For further research we would need to study
more use cases to ensure the research principles have maximum support in the
KD scientific field. Furthermore, this design needs to be supported by grapical
workflow tools that support iterative relationships instead of just monolithical
data transport.

References

[AC06] Juan Jos Garca Adeva and Rafael A. Calvo. Mining text with pimiento.
IEEE Internet Computing, 10(4):27–35, 2006.

[CZW+06] William K. Cheung, Xiao-Feng Zhang, Ho-Fai Wong, Jiming Liu, Zong-Wei
Luo, and Frank C.H. Tong. Service-oriented distributed data mining. IEEE

Internet Computing, 10(4):44–54, 2006.

[DBG+06] Souptik Datta, Kanishka Bhaduri, Chris Giannella, Ran Wolff, and Hillol
Kargupta. Distributed data mining in peer-to-peer networks. IEEE Internet

Computing, 10(4):18–26, 2006.

[Dra] Uddi Open Draft. Uddi version 2.0 api specification.

[GJF06] Dorgival Guedes, Wagner Meira Jr., and Renato Ferreira. Anteater: A
service-oriented architecture for high-performance data mining. IEEE In-

ternet Computing, 10(4):36–43, 2006.

[GO] The gene ontology. http://www.geneontology.org/.

[Gro] The Open Group. Definition of soa, version 1.1.
http://opengroup.org/projects/soa/doc.tpl?gdid=10632.

[GST+99] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P.
Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloom-
field, and E. S. Lander. Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring. Science, 286(5439):531–
537, October 1999.

[HD06] Jeffrey Hasan and Mauricio Duran. Expert Service-Oriented Architecture in

C# 2005, Second Edition. Apress, Berkely, CA, USA, 2006.

[KEG] Kegg: Kyoto encyclopedia of genes and genomes.
http://www.genome.jp/kegg/.

[Mey92] Bertrand Meyer. Applying ”design by contract”. IEEE Computer,
25(10):40–51, 1992.

[MOPT05] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova. Entrez gene: gene-
centered information at ncbi. Nucleic Acids Res, 33(Database issue), Jan-
uary 2005.

[MyG] MyGrid. Taverna workbench 1.7. http://taverna.sourceforge.net/.



[TZTL06] Igor Trajkovski, Filip Zelezný, Jakub Tolar, and Nada Lavrac. Relational
subgroup discovery for descriptive analysis of microarray data. In Michael R.
Berthold, Robert C. Glen, and Ingrid Fischer, editors, CompLife, volume
4216 of Lecture Notes in Computer Science, pages 86–96. Springer, 2006.

[W3Ca] The World Wide Web Consortium W3C. Soap version 1.2 part 0:
Primer (second edition). http://www.w3.org/TR/2007/REC-soap12-part0-
20070427/.

[W3Cb] The World Wide Web Consortium W3C. Web services description language
(wsdl) 1.1. http://www.w3.org/TR/wsdl.


