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1 Czech Technical University in Prague, Czech Republic
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Abstract. This paper addresses the problem of semi-automatic design
of workflows for complex knowledge discovery tasks. Assembly of opti-
mized knowledge discovery workflows requires awareness of and exten-
sive knowledge about the principles and mutual relations between diverse
data processing and mining algorithms. We aim at alleviating this burden
by automatically proposing workflows for the given type of inputs and
required outputs of the discovery process. The methodology adopted in
this study is to define a formal conceptualization of knowledge types and
data mining algorithms and design a planning algorithm, which extracts
constraints from this conceptualization for the given user’s input-output
requirements. We demonstrate our approach in two use cases, one from
scientific discovery in genomics and another from advanced engineering.

1 Introduction

Integration of heterogeneous data sources and inferring new knowledge from
such combined information is one of the key challenges in present-day life sci-
ence. Consider e.g. bioinformatics where for virtually any biological entity (a
gene, for example), vast amounts of relevant background information are avail-
able from public web resources. This information comes in diverse formats and
at diverse levels of abstraction. Continuing the genomic example, the publicly
available data sources range from DNA sequence information, homology and in-
teraction relations, gene-ontology annotations, information on the involvement
in biological pathways, expression profiles in various situations etc. To merge
only these exemplary sources of data, one already has to combine specialized
algorithms for processing sequences, relational data, ontology information and
graph data. It is thus no surprise that a principled fusion of such relevant data
requires the interplay of diverse specialized algorithms resulting in highly in-
tricate workflows. While the mutual relations of such algorithms and principles
of their applicability may be mastered by computer scientists, their command
cannot be expected from the end user, e.g. a life scientist.

The primary hypothesis investigated in our study is that such complex sci-
entific workflows can be assembled automatically with the use of a knowledge
discovery ontology and a planning algorithm accepting task descriptions auto-
matically formed using the vocabulary of the ontology.



2 Related Work

Several previous works have explored planning in the context of workflows. No-
tably, within the Pegasus project [5] a planner is used to construct a concrete
workflow out of an abstract workflow. In our research we tackle a related yet
different goal; given an ontology and a task description, we use a planner to
construct a workflow, which in the terminology of [5] would be called abstract.
The paper [8] is relevant to our work as it elaborates a procedure for converting
OWL-S service annotations into action descriptions in the standard Planning
Domain Definition Language (PDDL). Constructing a PDDL problem descrip-
tion is also a technical ingredient of our methodology.

Unlike in [8] we conduct workflow composition tasks in the specific domain
on data mining, for which we devise a special ontology. A similar aim was fol-
lowed by recent work of Brezany et al. [4]. This work, however, is focused only
on automatic formation of linear sequences of tasks: their ontology ensures that
there is only one algorithm that can be inserted into a workflow prior to an-
other algorithm. In our work we try to provide a more principled framework for
the domain of data mining, aimed at enabling the construction of much more
complex workflows with the main intended application in non-trivial scientific
discovery tasks.

To the best of our knowledge, there is so far no previous work providing
a principled and actionable ontology for data mining including relational data
mining with complex background knowledge. There have been efforts to provide
a systematic description of data and processes for the classical data mining tasks
e.g. in systems MiningMart [10], CAMLET [13], CITRUS [17] and NExT [2].

The MiningMart system [10] focuses on propositional data mining from data
stored in a relational database. It contains a meta-model for representing and
structuring of information about data and algorithms, however this meta-model
is expressed in XML, not in an ontology language. The system also does not
provide means for automatic workflow creation.

The project CITRUS [17] uses an object oriented schema is used to model
relationships between the algorithms. The system focuses on guiding the user
through mostly manual process of building of workflows by including informa-
tion about properties and usability of the algorithm in the algorithm description.
Planning is used only for proposing steps in process decomposition and refine-
ment.

In the CAMLET system an ontology of algorithms (processes) and ontology
of data structures are defined, however no ontology language is specified in [13].
The system relies on manually defined top-level control structure, which is then
refined using genetic programming until a suitable structure producing the re-
quired results is found. The structure of algorithms ontology does not attempt to
formalize the domain systematically, rather it is determined by the used top-level
control structure.

The most systematic effort to construct a general knowledge discovery on-
tology is described in [2]. The ontology used by the NExT system is built on
OWL-S and provides a relatively detailed structure of the propositional data



Fig. 1. The basic top level structure of the knowledge discovery ontology.

mining algorithms. It focuses on classical data mining processes, which contain
three subsequent steps: pre-processing, model induction and post-processing,
while our primary focus is in describing more complex relational data mining
tasks. The workflows generated by the NExT system are linear, whereas for our
tasks workflow is a directed acyclic graph.

The development of a unified theory (conceptualization) of data mining was
recently identified as the first of ten most challenging problems for data mining
research [19]. While we do not claim completeness or universal applicability of
the ontology developed in this work, in its design we did try to follow the state-
of-the-art works attempting to establish such a unified theory. From Mannila’s
traditional definition of data mining [9], we accepted the core concepts of a pat-
tern and representation language. On the other hand, in categorizing knowledge
and algorithm types, we followed on the recent comprehensive study by Džeroski
[6].

3 Knowledge Discovery Ontology

Our knowledge discovery ontology defines relationships among diverse ingredi-
ents of knowledge discovery scenarios, including both declarative (various knowl-
edge representations) and algorithmic (both inductive and deductive algorithms).
The primary purpose of the ontology is to make the workflow planner able to
reason about which algorithms can be used to produce intermediary or final re-
sults required by a specified data mining task. Due to limited space, we constrain
ourselves to describing only the basic aspects of our approach to designing the
ontology, which essentially follows up on the recent attempts of establishing a
conceptual framework for data mining [6]. Our proposal addresses two core con-
cepts: knowledge, capturing the declarative elements in knowledge discovery, and
algorithms, which serve to transform a piece of knowledge into another piece of
knowledge. The basic top-level structure of the ontology is in Figure 1. Currently
the ontology contains about 70 classes including descriptions of some proposi-
tional algorithms available in Weka data mining platform [18] and relational
data mining algorithms described in [15].



As an example of algorithm description we present the definition of the well
known Apriori algorithm in the description logic notation [1] :

Apriori v NamedAlgorithm

u ∃ output · (MiningResult u
∀ contains · AssociationRule)

u ∃ input · (Dataset u
SingleRelationKnowledge u
∃ format · {ARFF, CSV})

u ∃ minSupport · double

u ∃ minConfidence · double

The Apriori algorithm is defined as an algorithm that has two parameters
minSupport and minConfidence, has a single relation dataset in the CSV or
ARFF format as its input, and produces a result in the form of association
rules.

Technically, the ontology is implemented in the description logic variant
(OWL-DL) of the leading semantic web language OWL [11]. Our primary rea-
sons for this choice were OWL’s sufficient expressiveness, modularity, availability
of ontology authoring tools and optimized reasoners and a well-established com-
munity support.

4 Workflow Construction

The task of automatic workflow construction consists of the following steps: con-
verting the KD task into a planning problem, generating the plan using a third
party planning algorithm, storing the generated abstract workflow in form of
semantic annotation, instantiating the abstract workflow with specific configu-
rations of the required algorithms and storing the generated workflow.

To maintain generality of our approach, we decided to encode the planning
task into the standard language PDDL (‘Planning Domain Definition Language’)
[12]. We are using PDDL 2.0 with type hierarchy and domain axioms. Planning
algorithms require two main inputs. The first one is a description of the domain
specifying the available types of objects and actions. The second one is the
problem description specifying initial state, goal state and the available objects.
We have developed an algorithm for generating the domain description from the
KD ontology. In order to formalize problem description and generate the problem
description in PDDL in a similar way and for storing the created workflows in a
knowledge-based representation, we have created a small ontology for workflows,
which extends the knowledge discovery ontology.

As an example we present the definition of action in PDDL representing the
Apriori algorithm described in Section 3.



(:action AprioriAlgorithm
:parameters (
?v0 - Dataset_SingleRelationKnowledge
?v1 - CSV
?v2 - MiningResult_contains_Associa-

tionRule )
:precondition (and (available ?v0)

(format ?v0 ?v1))
:effect (and (available ?v2)

(format ?v2 ?v1)))

The information about the output of Apriori algorithm was expressed using a
conjunction of the named ontological class MiningResult, a universal restriction
on contains and an existential restriction on format. Therefore the effects of the
action using Apriori algorithm are represented using the unary predicate avail-
able applied on a named class MiningResult contains AssociationRule, which is
a subclass of MiningResult, and a binary predicate format.

We have implemented a planning algorithm based on the Fast-Forward (FF)
planning system [7] to generate abstract workflows automatically. The FF plan-
ning system uses a modified version of hill climbing algorithm called enforced hill
climbing to perform forward state space search. The goal distances are estimated
by relaxed GRAPHPLAN [3]. The original planning problem is converted into
a relaxed problem by ignoring delete lists of the operators.

Currently the planning algorithm outputs the first workflow with the small-
est number of processing steps as the solution. In future work we are planning to
include other heuristics such as the estimated runtimes of the workflows to pro-
vide the user with the possibility to view and select from a number of workflows
with the highest ranking.

5 Use Cases

We have conducted experiments with workflow construction in two domains. The
first domain is genomics, where we were interested in relational descriptive anal-
ysis of gene expression data. The second is concerned with learning from product
design data. Here the examples are semantically annotated CAD documents.

Both these domains are highly knowledge-intensive. One of the main chal-
lenges is to efficiently extract relevant information from large amounts of data
from different sources with a rich relational structure. The use of advanced knowl-
edge engineering techniques is becoming popular not only in bioinformatics, but
also in the engineering domain, and complex background knowledge thus nowa-
days characterizes both domains. As a result, traditional data mining techniques
and tools are not straightforwardly applicable. Rather, complex knowledge dis-
covery workflows are required in both the domains under inquiry.

An example of abstract workflow generated in the engineering domain is in
Figure 2. There are four preprocessing steps, which can be performed simulta-
neously. In this case all the preprocessing steps focus on extracting knowledge



Fig. 2. An automatically generated workflow for obtaining classification (predictive)
rules and subgroup descriptions (descriptive rules) from annotations of CAD design
drawings.

from the semantic representation into a form, in which it could be used by
relational data mining algorithm. ModeDeclarationsExtractorOWLDL extracts
mode declarations from domain and range restrictions on properties defined in
the CAD ontology. The sort theory containing a taxonomy of classes from the
CAD ontology is extracted using SortTheoryExtractorOWLDL. The OWLDL-
RelationalConverter is used to convert descriptions of the individual annotations
to Prolog and RDF2PrologConverterCI does the same for the identifiers of the
annotations.

6 Conclusions and Future Work

We entered this study with the primary hypothesis that complex scientific and
engineering knowledge discovery workflows, such as those we had to develop
manually in previous studies [14, 16], can be proposed semi-automatically. Semi-
automatic workflow composition does require the user to know exactly what
he/she possesses as the knowledge input and what kind of output he/she desires
to achieve, but it does not require him/her to be aware of the numerous proper-
ties and mutual relationships of the wide range of relevant knowledge discovery
algorithms.

For the purpose of workflow generation, we used two main ingredients. First,
a formal conceptualization of knowledge types and algorithms was implemented
through a knowledge discovery ontology, following up on state-of-the-art develop-
ments of a unified data mining theory. Second, a planning algorithm is employed
that assembles workflows on the basis of planning task descriptions extracted
from the knowledge discovery ontology and the given user’s input-output task
requirements. The workflows generated by our algorithm were complex, but rea-
sonable in that there was no apparent way of simplifying them while maintaining
the desired functionality. Therefore the workflows generated in two use cases (in
science and engineering) can serve as a proof of concept for our approach.

Since the generated workflows are not linear, we could get significant runtime
improvements from executing the workflows in the GRID environment. Therefore
in future work we are planning to extend the ontology by descriptions of concrete



computational resources e.g. by integration of our KD ontology into OWL-S.
This will enable us to produce workflows optimized for execution in a given
computing environment. We are also planning to evaluate the respective merits
of planning via conversion into PDDL and building a planning algorithm directly
over the DL representation.
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