
Towards Service-Oriented Knowledge Discovery

A Case Study

Jeroen de Bruin1, Joost N. Kok1, Nada Lavrac2 and Igor Trajkovski3

1 LIACS, Leiden University, Leiden, The Netherlands
2 Jozef Stefan Institute, Ljubljana, Slovenia

3 New York University Skopje, Skopje, Macedonia

Abstract. Due to advances in software engineering and architecture,
as well as the increased popularity of scientific workflows, new and bet-
ter ways of performing knowledge discovery experiments can be devised.
In this paper we look into these technologies and reason how they can
improve tradiotional knowledge discovery processes, and present an im-
plemented use case that shows how these improvements work in practise.
We also discuss the weaknesses of the new methods and look into direc-
tions that can be taken with these new technologies.

1 Introduction

Knowledge Discovery (KD) in data has proven to be valuable in many scientific
fields over the last few decades. Setting up a KD experiment is no simple task.
KD processes often consist of several algorithms connected together, whereby
data flows from one algorithm to another. A common scenario for a KD process
is as follows: the KD researcher either programs or obtains all algorithms and
connects the in- and ouputs together, runs the process, and eventually gets a
result as an output. We perceive this situation as far from optimal, as it comes
with quite a few problems in process management and construction, and subop-
timal performance.

Instead we can consider the following scenario: Suppose a researcher wants
to create a certain KD experiment involving several algorithms. The researcher
only has some of these algorithms on her own computer, knows that there are a
few available at a location halfway around the world, and some that she needs
but does not know where to find. The ideal situation for the researcher would
be to just use a search engine to look up the missing algorithms, use a tool to
connect all algorithms together, and then run the experiment.

The scenario presented above is not at all unrealistic. Due to advances in
workflow management research, experiments can now be designed in such a
way that individual parts of the experiment can be easily connected to each
other, often in a simple graphical interface. Advances in software engineering
and architecture have led to the Service Orientation (SO) paradigm that allows
for relatively simple and secure remote computing, and easy lookup of publicly
available services. Through combination of both technologies, we can make KD



processes better, faster, and easier to construct, which in turn leads to better
and more reliable research.

Until recently the focus and application domain of SO technology has mostly
been the commercial sector and large-scale business applications. In this paper
we explore the benefits and drawbacks of SO applications in KD by conducting
a case study. In Section 2, we will contrast the two scenarios briefly discussed
above. We will also cover the merits of SO and workflow technology. In Section
3, we will discuss the specific algorithms and technologies used to implement the
case study. In Section 4 we discuss the case study and compare its implementa-
tion and design to its non-web-based counterpart. Finally, in Section 5, we draw
some conclusions on the use of SO in KD, and shed some light on future work
and future investigations.

2 Problem statement

In this section we contrast the first scenario where the researcher constructs the
KD process to the second scenario where the researcher composes a KD process
using SO and workflows.

2.1 Scenario 1: Constructed KD process

In this first scenario the researcher constructs her own KD experiment by ob-
taining all required algorithms and connecting them manually. In practice, this
usually means accessing diverse resources, for example the internet, to find all re-
quired algorithms and KD packages from diverse sources, and then run them one
by one. If the algorithms are contained in a KD package like WEKA [Gar95], the
researcher does not need to worry about intermediate data representation as the
package does that for him, but if this is not the case, the researcher has to pro-
gram this representation as well. Apart from this tedious construction process,
there are also a number of weaknesses that can easily break this scenario:

– Algorithm versioning

When a new version of an algorithm or KD package appears, the version that
the scientist uses is often not automatically updated. Instead, the scientist
has to keep track of modifications himself by regularly visiting the website.
Another problem with versioning is that it sometimes breaks compatibility
with previous versions, which may break the entire KD process.

– Algorithm connection

While standard KD packages perform well on basic KD tasks, they usu-
ally lack algorithms that are tailored to a specific field of research like bio-
informatics. When this is the case, the scientist has to connect all individual
components of the KD process himself, usually by using a scripting lan-
guage. This connection is often constructed in an ad-hoc fashion, making it
less likely to cope with changes that might occur. Furthermore, the interme-
diate representations used in the connections are often suited only for the



process they were designed for, so if two processes were to be combined, it
is likely that one representation would need change.

– Algorithm availbility

It is not unlikely that some algorithms or specific algorithm implementations
are not publicly available, espcecially when implementations are managed
by commercial institutes. They want to keep their implementation propriety
knowledge, and are unwilling to distribute it or only do so at a high cost.
This leaves the researcher the choice to either implement the algorithm her-
self, or to revise the experiment.

– Performance

KD processes sometimes involve terabytes of data. When performing KD on
such high volumes of data, every speedup counts, and ideally the scientist
uses the fastest machines with the best algorithms in their optimal implemen-
tation. However, the optimal implementations of algorithms are not always
available or suitable for the platform that the scientist uses, making the
KD process slower. Furthermore, some algorithms run faster on specialized
hardware, that is also not always available to the scientist.

2.2 Scenario 2: Composed KD process

In this scenario the scientist composes her experiment through the use of a
scientific workflow. We define a scientific workflow as a collection of components
and relations among them, together constituting a process. Components in a
workflow are entities of processing. They are connected by relations, which can
either be data entities that transport data from one component to another,
or control entities that impose conditions on the execution of a component.
Scientific workflows have become increasingly popular over the last few years,
since they allow a scientist to graphically construct a process of interconnected
building blocks, allowing for easier experiment design.

Components in the composed KD process can be present either locally or at
some distant location. These components interact with each other in a Service-
Oriented Architecture [Gro]. A SOA is an architectural style that supports SO,
where SO is a way of thinking in terms of services and service-based development
and the outcomes of services. In practise, SOA is a distributed architecture that
allows a researcher to build an application by means of composing individual
components that potentially exist across separate (physical or logical) domains.
These components are called Web services [HD06]

The combined use of SO and scientific workflows adresses the weaknesses of
scenario 1 as follows:

– Algorithm versioning

Keeping track of newer versions of an algorithm is no longer an issue for
the scientist, since it is automatically updated on the side of the service
provider. A scientist can be notified of an update, but updating can also



proceed completely transparently. Compatibility with previous versions is
also guaranteed, for the service has to adhere to a certain interface, an an-
notation of the service’s functionality that serves as a contract between the
service user and the service provider. A widely used standard for annotat-
ing web services at the moment is the Web Service Description Language
(WSDL) [W3Cb]. WSDL is an XML-based standard that describes for each
web service how the service handles incoming messages and what type of
parameters it supports.

– Algorithm connection

Data transport between components in a scientific workflow proceeds through
a standardized way, usually in some form of structured transport protocol.
Web services are often accessed through messages written in the Simple
Object Access Protocol (SOAP)[W3Ca], which is an XLM-based message
format and transport protocol. Since message formatting is standardized,
the KD process will not break as long as the components will adhere to the
message content, which is guaranteed by the component’s interface.

– Algorithm availability

Since implementations of algorithms are now managed by the service provider
and executed on their end, it is safe for the providers to offer their services
without running the risk of losing proprietary knowledge. These services can
automatically be polled and found by the scientist through a Universal De-
scription Discovery and Integration (UDDI) [Dra], which is a registry for
web services offered by service providers containing all WSDL documents
corresponding to services of that provider.

– Performance

Since SOA and all related protocols discussed above are platform-independent
technologies, each platform can potentially support it. This makes it easier
for the service provider to use the programming language and platform that
is best suited, which usually leads to a performance increase. Moreover, if
two services can be executed independently and are located on different ma-
chines, they can be executed in parallel in a scientific workflow, speeding up
the entire KD process even more.

3 Experimental Setting

3.1 Algorithms

For our case study we used a KD scenario described in [TZTL06]. In this sce-
nario microarray data is processed to identify differentially expressed genes based
on a threshold score computed by the student’s t-test. This set of differentially
expressed genes, together with a selection of their non-differentially expressed
counterparts (both expressed in Entrez id’s [MOPT05]), are then annotated



with terms from the Gene Ontology (GO)[GO]. In the final step these anno-
tations, together with information about interaction amongst genes, are repre-
sented as facts and supplied to the Relational Subgroup Discovery algorithm
(RSD) [LZF02].

The RSD algorithm takes a set of labelled data items and a class (in this case
the classes differentially expressed and non-differentially expressed) and tries to
find descriptions of subgroups of target class examples that are as large as pos-
sible, and have a significantly different distribution of the target class examples.
However, to avoid that a certain set of data items dominate the entire rule-
space, an iterative weigthed covering algorithm is used to decrease weights of
those items once they are collected in a rule. Based the number of items in that
rule belonging to each class and their individual weights, the quality of a rule is
measured.

As a post-processing step, rules are uniformly formatted using the GO de-
scriptions, improving readability for expert reviewers. As an example, consider
the rule below:

Rule 1: Support 6, Weight: 12.0
Differential participants: [119391,1375,5287,1021,6011]
Non-differential participants: [9950]
molecular function(A,catalytic activity), cellular component(A,cytoplasmic part)

In this rule, a total of six genes were involved; five of them were differentially
expressed, one was not, giving the rule a total weight of twelve (weigths of indi-
vidual genes are not mentioned in the rule). The rule itself states the common
factors of all genes, whereby the genes are designated as group ’A’. The different
predicates like ’molecular function’, as well as descriptors like ’catalytic activity’
all come from from GO. In this case, the correct interpretation of the rule would
be:

”Subgroup ’A’ of the differentially expressed genes resides in the cytoplasmic
part of the cell and has as primary function catalytic activity, whereby ’A’ con-
sists of genes with Entrez ids 119391, 1375, 5287, 1021, 6011 and 9950”

3.2 Workflows

A number of workflow designer tools have been developed over the last few
years, such as the orange toolkit [JMD+05] and Taverna [MyG]. For our case
study, we chose Taverna because it has the capability to execute web services.
In Taverna, components are called processors, and apart from local services and
WSDL services, Taverna also supports BioMoby [WL02] and SoapLab [KFH+06]
web service interfaces. Connections in Taverna are pretty straightforward; data
connections are called data links, and control connections are called contol links.
After a process has been designed and composed, the user can supply the input
parameters of the process and execute it. When the process is done, Taverna will
present the user the results, or give an error message if something went wrong.



3.3 Implementation

Implementation of the original algorithms was done in the Python language and
run on Python 2.5.2. The web service implementations were done in Microsoft
C++ .Net 2005 and Microsoft C-Sharp 2005 . All experiments were performed
on MicroSoft Windows XP using an Intel centrino duo processor 1.66GHz, and
1GB of main memory.

4 Use Case

In this section we present the use case. The original program was already split up
in a selection and a rule mining part, so we implemented both as distinct services.
We chose three different implementations to compare: The first implementation
was a simple webservice that executed a command in the windows command-line
interpreter, the second implementation was a python web service implementa-
tion that uses the original python code, and the last implementation was a
C-sharp web service implementation that used a C++ .Net re-implementation
of all python code. All implemenations still use the RSD algorithm, which was
left unmodified.

4.1 Shell web service

For our first use case, we made a web service in C-Sharp that takes as an input
the parameters of the program or executable that needs to be executed, and
simply forwards them to the command-line interpreter. While this is the easiest
implementation of a web service and introduces the possiblily of remote process-
ing, it still shares some of the weaknesses of a constructed KD process, since the
underlying program remains prone to unexpected change in versioning, thereby
possibly breaking the web service shell.

4.2 Python web service

For our second use case we tried to modify the original program code as little as
possible, to show that any program can be transformed into a web service within
its own implementation domain. For the Python webservice implementation we
used the Python Webservice Module, and coupled the input of both services to
this module. Furthermore, we extended the algorithm to use the KEGG ontology
[KEG] as well, to show how updates can be performed without modifying the
interface of a web service, making users completely oblivious of the service’s
implementation and updates.

4.3 C-Sharp web service

For our last use case we re-imlemented all the Python code into C++ to show
how web services can increase performance. The performance gain is in several



dimensions here. First, applications made in programming languages like C++
and C-Sharp tend to execute faster than those made in scripting languages due
to rigorous compile-time optimizations. Second, the authors are more proficient
with C++ than with Python, which also yields in a performance increase. To
compare performance, we took the microarray data used in [GST+99] and re-
ran the experiment that was done in [TZTL06], whereby Acute Lymphoblastic
Leukemia (ALL) was contrasted against Acute Myelogenous Leukemia (AML).
The results of the benchmark test can be seen in Table 4.3. All measurements
are in seconds and are the averages of 50 consecutive runs

Selection service Mining service

Original implementation 3.08 99
Shell implementation 3.20 102
Python implementation 3.23 100
C++ implementation 1.53 66

Table 1. Web service implementation benchmarks

4.4 Taverna workflow

In Taverna we constructed the workflow as shown in Figure 1. To set up the
workflow, the user loads the data files to the inputs created, and then runs the
workflow. When succesfull, the workflow will display the returned file. Because all
parameters are bundled together in one SOAP message, we used input-splittlers
and output-splitters to join and disjoin them. A few observations on this work-
flow:

– Monolithic sequential processing

Subprocesses that are in sequential order in Taverna need to finish first before
the next subprocess can start; when sending data to a remote component,
all the data is uploaded first before data mining can begin. While it is very
intuitive to separate these processes completely, it can also be faster to let
the processing begin while the data transfer is still in progress. In case of our
Selection service, which can already start calculating t-values of individual
gene entries when the upload is still in progress.

– Stateless services

When executing our mining service, first all ontologies have to be loaded
into memory, then annotation of the genelists is performed, and finally RSD
starts processing. Every time the web service is executed, the same process
is repeated. This is because this service is stateless, meaning that the web



Fig. 1. Taverna workflow of web services

service has no knowledge of previous executions. We argue that if the service
would preserve some form of state, execution could proceed faster. For ex-
ample, if the mining service would keep the ontologies in memory and only
change the gene assignments, the process would speedup considerably, being
freed from most startup costs after the first run.

– String representation

Message contents in SOAP are usually represented in text form with the type
String. While this suffices for small messages, it is a redundant representation
for large volumes of data. We argue that compression and decompression of
data segments in the SOAP messages could speed up a KD process .

Notice that these observations may also hold for the KD construction scenario,
and that solutions to these problems require reimplementation of services and
underlying algorithms, and possibly revisions or extensions to the SOAP protocol
and Taverna messaging.



5 Conclusions and Future Work

In this paper we discussed the transition from construction of a KD process to
the composition of a KD process through the use of SOA and workflows. We
have contrasted two scenarios that indicate the weaknesses of process construc-
tion and execution on a single machine, weaknesses that were adressed in the
second scenario by composing processes in an SO fashion.

By using web services, versioning, connectivity, availability and performance
of individual services are improved; versioning is improved by transparent updat-
ing of algorithms and the use of fixed, WSDL standardized interfaces, connectiv-
ity is improved by using the standardized SOAP transport protocol, availability
is improved by better guarantees in service safety and the availability of the
UDDI lookup service, and performance is improved by the option of parallel
programming and platform specific implementations.

Apart from the improvements on individual services, the design and perfor-
mance of the entire KD process can be improved by using scientific workflows,
which can be designed and executed with the Taverna workbench. By using
workflows, design of KD processes is easier and more intuitive, since it splits KD
processes in processing components and connections. A KD process designer just
needs to import the components and connect them together in order to gain a
valid KD process, which can then immediately be executed to gain a result.

To illustrate the merits discussed above and to show how web services can
be implemented, we created three different use cases. We showed how each use
case contributed to the KD process, and showed how web-services can yield a
performance gain, sometimes cutting exectuion time by 50%

Apart from merits we also addressed weaknesses in SOA and scientific work-
flows as they are right now, weaknesses such as monolithic sequential processing,
redundant message formats and staelessness. These weaknesses can be adressed
by further re-implementing algorithms as staeful services, and my modifying or
extending SOAP.

Apart from SOAP extension, we also see future work in the combination of
web services and databases. Our vision is to use web services to access databases
to perform remote datamining and to construct queries. This vision fits in the
vision expressed in our earlier work [dBK06,dB06]

References

[dB06] Jeroen S. de Bruin. Towards a framework for inductive querying. In Flori-
ana Esposito, Zbigniew W. Ras, Donato Malerba, and Giovanni Semeraro,
editors, ISMIS, volume 4203 of Lecture Notes in Computer Science, pages
419–424. Springer, 2006.

[dBK06] Jeroen S. de Bruin and Joost N. Kok. Towards a framework for knowledge
discovery. In Jean Ponce, Martial Hebert, Cordelia Schmid, and Andrew
Zisserman, editors, IFIP PPAI, volume 4170 of Lecture Notes in Computer

Science, pages 219–228. Springer, 2006.
[Dra] Uddi Open Draft. Uddi version 2.0 api specification.



[Gar95] S. Garner. Weka: The waikato environment for knowledge analysis, 1995.
[GO] The gene ontology. http://www.geneontology.org/.
[Gro] The Open Group. Definition of soa, version 1.1.

http://opengroup.org/projects/soa/doc.tpl?gdid=10632.
[GST+99] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P.

Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloom-
field, and E. S. Lander. Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring. Science, 286(5439):531–
537, October 1999.

[HD06] Jeffrey Hasan and Mauricio Duran. Expert Service-Oriented Architecture

in C# 2005, Second Edition. Apress, Berkely, CA, USA, 2006.
[JMD+05] Aleks Jakulin, Martin Možina, Janez Demšar, Ivan Bratko, and Blaž Zupan.

Nomograms for visualizing support vector machines. In KDD ’05: Proceed-

ings of the eleventh ACM SIGKDD international conference on Knowledge

discovery in data mining, pages 108–117, New York, NY, USA, 2005. ACM.
[KEG] Kegg: Kyoto encyclopedia of genes and genomes.

http://www.genome.jp/kegg/.
[KFH+06] G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna, S. Marru, and D. Gan-

non. Building web services for scientific grid applications. IBM J. Res.

Dev., 50(2/3):249–260, 2006.
[LZF02] Nada Lavrac, Filip Zelezný, and Peter A. Flach. Rsd: Relational subgroup

discovery through first-order feature construction. In Stan Matwin and
Claude Sammut, editors, ILP, volume 2583 of Lecture Notes in Computer

Science, pages 149–165. Springer, 2002.
[MOPT05] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova. Entrez gene: gene-

centered information at ncbi. Nucleic Acids Res, 33(Database issue), Jan-
uary 2005.

[MyG] MyGrid. Taverna workbench 1.7. http://taverna.sourceforge.net/.
[TZTL06] Igor Trajkovski, Filip Zelezný, Jakub Tolar, and Nada Lavrac. Rela-

tional subgroup discovery for descriptive analysis of microarray data. In
Michael R. Berthold, Robert C. Glen, and Ingrid Fischer, editors, Com-

pLife, volume 4216 of Lecture Notes in Computer Science, pages 86–96.
Springer, 2006.

[W3Ca] The World Wide Web Consortium W3C. Soap version 1.2 part 0:
Primer (second edition). http://www.w3.org/TR/2007/REC-soap12-part0-
20070427/.

[W3Cb] The World Wide Web Consortium W3C. Web services description language
(wsdl) 1.1. http://www.w3.org/TR/wsdl.

[WL02] Mark D. Wilkinson and Matthew Links. Biomoby: An open source biological
web services proposal. Briefings in Bioinformatics, 3(4):331–341, 2002.


