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Abstract. For the last decade, set pattern discovery from binary re-
lations has been studied in depth. Today, many complete and efficient
algorithms for frequent closed set mining are available. More recently,
their extensions towards n-ary relation mining have been considered. In
this paper, we consider the recent proposal for closed n-set pattern dis-
covery and we discuss their relevancy. Indeed, starting with experiments
on two real-life multidimensional data sets, we discuss the quality of the
extracted local patterns thanks to an inside and outside perspective on
the discovered closed n-sets. This original analysis enables to support the
declarative specification of a priori relevant patterns thanks to the con-
junction of primitive constraints (minimal size, minimal area, δ-isolated
and fault-tolerance constraints) they have to satisfy. Interestingly, some
of these primitive constraints can be exploited within available solvers.

1 Introduction

For the last decade, set pattern discovery from binary relations has been exten-
sively studied. Many complete and efficient algorithms are now available. This
is in particular the case for (frequent) closed set mining (see, e.g., [13, 22, 14,
18]). Closed set mining has been proved useful across the many applications of
frequent sets, e.g., association rule discovery, associative classification, pattern-
based clustering, etc. Following a perspective that is now classical, constraint-
based mining of closed patterns (or formal concepts) has been studied to improve
both the efficiency and the relevancy of the extracted patterns (see, e.g., [17, 2,
1, 3]). Indeed, constraints (e.g., minimal size or typing constraints) are one ob-
vious way of tackling some interestingness issues and avoiding the computation
of thousands of uninteresting patterns.

Examples of binary relations that have been considered are the popular
transaction× item cases. More generally, it concerns the many application do-
mains where Boolean properties can be recorded for a given set of objects, i.e.,
object × property data sets. Recently, generalizations of these algorithms to n-
dimensional settings (n ≥ 3) have been proposed. Handling n-ary relations looks
promising. For instance, we would like to consider an object× property × time



ternary relation or a customer × product × region × time 4-ary relation. This
has given rise to a few proposals [11, 5, 10, 9].

In this paper, we address some issues raised by these new closed patterns. The
whole discussion is valid in the binary case but it becomes crucial in the more
difficult setting of n-ary relation mining. Indeed, all the difficulties we already
know in the binary case (e.g., lack of fault-tolerance, explosion of the number of
patterns, too many small patterns that appear to be false positive observations)
are dramatically aggravated when n ≥ 3. Starting from experiments with two
real-life multidimensional data sets, we consider the quality of the extracted
patterns thanks to an inside and outside perspective on the computed closed
n-sets. In other words, we analyze the extracted patterns considering first the
elements that are inside the patterns and, afterwards, the elements that do not
belong to the patterns. To the best of our knowledge this is a rather original
analysis of pattern quality. This is however a fairly natural idea when considering
D. Hand’s perspective on local pattern discovery: “A local pattern is a data
vector serving to describe an anomalously high local density of data points”
[8]. Therefore, we will consider both the density issues inside a pattern but also
outside vs. inside in order to provide a semantics to “anomalously”.

Constraint-based mining is a successful framework for supporting pattern
discovery tasks. It leads to the declarative specification of the constraints that
have to be satisfied by the extracted patterns. Such a specification has to com-
bine primitive constraints that are more or less well-identified and studied. In
this paper, we consider conjunctions of primitive constraints. Some of them like
minimal size or minimal area constraints are quite popular. Some others like
fault-tolerance or the δ-isolated constraints are not really well understood. Our
empirical study confirms that minimal size, area or volume constraints remain
important in the general case of n-ary relations (inside view). We also show
that extracted patterns can be split into different classes called pattern types
w.r.t. their outside “slices” (outside view). Not only the use of new constraints
is discussed but also we consider briefly their efficient processing within avail-
able solvers. Notice that the efficient processing of constraints (i.e., “pushing”
them into the extraction phase) is much harder when considering n-ary relation
mining with n ≥ 3 rather than the binary one [5].

The rest of the paper is organized as follows. Section 2 provides the definition
of closed n-sets in n-ary relations as well as a state-of-the-art of related algo-
rithms. In Section 3, we analyze closed n-sets extracted from two real data sets
following both an inside and an outside view. Section 4 discusses how such an
empirical study can help in extracting more relevant patterns. Section 5 briefly
concludes.

2 Closed patterns in n-ary relations

2.1 Preliminary definitions

Let A1, . . . , An be n categorical attributes and assume their domains are respec-
tively D1, . . . , Dn. R is a n-ary relation on these attributes, i.e, R ⊆ D1 × · · · ×



Dn. n-sets are elements of 2D1 × · · · × 2Dn

. We use the ] operator to denote set
cardinality.

Intuitively, a n-set H = 〈X1, . . . , Xn〉 s.t. ∀i = 1 . . . n, Xi ⊆ Di is a closed
n-set iff (a) all elements of each set Xi are in relation with all the other elements
of the other sets Xj 6=i in R and (b) Xi sets cannot be enlarged without violating
(a). Formally, H is a closed n-set iff it satisfies the conjunction of the following
primitive constraints.

Definition 1. (Cconnected) H = 〈X1, . . . , Xn〉 satisfies Cconnected in R iff

X1 × · · · ×Xn ⊆ R
Definition 2. (Cclosed) H = 〈X1, . . . , Xn〉 satisfies Cclosed in R iff

∀i = 1 . . . n, ∀xi ∈ Di\Xi, 〈X1, . . . , Xi∪{xi}, . . . , Xn〉 does not satisfy Cconnected

Cconnected imposes patterns to be a sub-set of R, i.e., in their Boolean rep-
resentation they only cover ”1” values. Cclosed forces the extracted patterns to
be maximal w.r.t. every attribute. In a binary relation, a closed 2-set is a 2-set
〈X1, X2〉 satisfying Cconnected∧Cclosed. This is known as a formal concept accord-
ing to the terminology introduced by R. Wille [20]. These closed 2-sets are asso-
ciated closed sets from each attribute, e.g., a closed itemset and its supporting
closed set of objects/transactions. Closed n-sets appear to be a straightforward
generalization of formal concepts to n-ary relations when n > 2.

A B C

Fig. 1. A visual representation of RE ⊆ {1, 2, 3} × {A, B, C} × {star, circle, square}.

Example 1. Figure 1 provides a ternary relation RE ⊆ {1, 2, 3} × {A, B,C} ×
{ , , }. This may represent customers (1, 2, and 3 ) buying items (A, B and
C) along three months ( , and ). The 3-sets 〈(1, 3), (A,B,C), ( )〉 and
〈(1, 2, 3), (B), ( , )〉 are examples of closed 3-sets in RE . 〈(1, 3), (A,B, C), ( )〉
shows that Customers 1 and 3 buy Items A, B and C during Month ” ”
(Cconnected). Moreover, it is closed w.r.t. every attribute (Cclosed):

– There is no other month for which they buy these three items.



– No other customer buys these three items during this month.
– No other item is simultaneously bought by these customers during this

month.

The 3-set 〈(1, 3), (A,B, C), ( , ) violates Cconnected because (1, A, ) 6∈ RE

or (3, A, ) 6∈ RE . The 3-set 〈(2), (B,C), ( )〉 satisfies Cconnected but not Cclosed

because (2, A, ) ∈ RE .

Notice that when we discuss about the pattern types, we consider that the
n-ary relation is encoded as a collection of Boolean values that tell whether it
contains a given tuple or not. This way, RE appears to be a cube (3-dimensional
structure) of 0/1 values.

2.2 Computing closed patterns in n-ary relations

We do not discuss further the many proposals in the binary case (see, e.g., [13,
22, 14, 18, 17, 2]). Recently, the two algorithms CubeMiner [10] and Trias [9]
have been proposed for closed pattern mining from 3-ary relations.

[10] proposes in fact two algorithms that compute closed 3-sets from ternary
relations. The first one, called Representative slice mining, consists in enumer-
ating all subsets of the smallest attribute domain. For each of them, the related
binary relation is projected on the two other attributes using bitwise and opera-
tions between elements. Then, closed 2-sets are extracted from these new binary
relations. After adding elements of the enumerated attribute, a post-processing
phase removes the 3-sets that are not closed. A second algorithm, called Cube-
Miner, directly operates on the ternary relation. It consists in using cubes de-
noted X × Y × Z called cutters presenting the following particularity: none of
their tuples are in relation. In other terms, it generalizes the closedness check-
ing introduced in [2] for closed 2-set mining. [10] performs a depth-first ternary
enumeration, i.e., each candidate is split into three new candidates: a first one
without the elements of X, a second one without the elements of Y and a third
one without the elements of Z. The main limitations of this algorithm are that
(a) for each candidate, several checks are required to ensure its closedness and,
(b) each candidate can be generated several times.

Trias [9] also extracts closed 3-sets from 3-ary relations. It basically relies
on closed 2-set extraction from two binary relations. From a relation on D1 ×
D2 × D3, Trias first constructs a new binary relation on D1 × (D2 × D3)
whose columns correspond to couples of elements of D2 and D3. Every closed
2-sets 〈A,B〉, extracted from this new binary relation, is such that B contains
couples of D2 ×D3 in relation with each of the elements of A ⊆ D1. The set B
stands for a relation which is not fully connected (i.e., there are ”0” values in its
Boolean representation). Thus, in a second step, Trias extracts every closed 2-
sets from the relation generated from B and checks its closedness w.r.t. D1. This
verification is easily carried out: its closure must be A. Basically, this algorithm
only works when D1 is small otherwise too many patterns that are closed on
D1 × (D2 ×D3) but not on D1 ×D2 ×D3 are generated.



To the best of our knowledge, only the Data-Peeler algorithm is able to
extract closed patterns in n-ary relations under constraints when n ≥ 3 [5]. It
performs a binary depth-first enumeration where the n-ary search-space is split
into two disjointed partitions of the original search-space. The different attributes
are considered in a symmetric way, i.e, any attribute can be enumerated. Again,
the principle of [2] is used to check the closedness of patterns. In practice, Data-
Peeler outperforms the two other algorithms by orders of magnitude in terms
of efficiency for 3-ary relations.

3 Empirical study of closed pattern relevancy

3.1 Data sets

We have been considering two real-life multidimensional data sets. The first one
is derived from the logs of the DistroWatch.com website. This popular web site
gathers comprehensive information about GNU/Linux, BSD and Solaris distri-
butions. Every distribution being described on a separate page, a visitor loading
it is considered “interested” in the distribution. Every IP address contacting the
server is analyzed so that the country the connection comes from is stored as
well. Finally, time stamps enable to study the evolution of the interest granted
to the different distributions along time. Data have been normalized so that ev-
ery country and every time period has the same importance. They have been
transformed in 0/1 data in the following way: for each distribution, we have
kept the elements of R containing this distribution and such that its normalized
interest exceeds a threshold equals to one quarter of the maximal normalized
interest for this distribution in R. The final 3-ary data set gathers 10 semesters,
242 countries and 294 distributions. The density of this data set (ratio between
the cardinality of the relation and the product of the cardinality of all attribute
domain) is 0.5%.

The second data set contains information about the dynamics of a public
bicycle network. Typical information at our disposal is which days of the week
and at what time bicycles were rented to go from a given place to another one.
This data set is in the form of a 4-ary relation with the following attributes: day
of the week (7 elements), period of the day (8 elements - periods of 3 hours),
departure place (245 elements) and arrival place (245 elements). For confiden-
tiality reasons, we cannot provide more details about these data. The density of
this data set is 0.35%.

3.2 Inside view of patterns

Closed patterns in n-ary relations as for itemsets and formal concepts in binary
relations, can depict different types of associations between sets of elements
(e.g., one type of pattern concerns sets of elements of small size associated to
sets of large size). During a local pattern mining task, the minimal size constraint
enforces that the size of a given attribute set is larger than a threshold. It is the



multidimensional counterpart of the popular minimal frequency constraints in
the binary case. Using this constraint, only the patterns that are large enough
– according to one or several attributes – are extracted. If we do not want
to consider patterns describing associations between small sets of attributes,
then the interpretation is easier. In addition to this, we may also consider a
minimal volume constraint forcing the patterns to cover at least a given number
of tuples in the original data set. Such a constraint may be more relevant than
a conjunction of minimal size constraints on the different attributes.
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Fig. 2. Proportion of closed n-set having a given number of elements in one attribute
(public bicycle network data at the top and DistroWatch.com data at the bottom).



Closed local pattern mining in n-ary relations has been recently studied and
an empirical study of the impact on such constraints in real cases is still missing.
This is a good opportunity to grasp the difficulty at considering such data sets
and to see what are the shapes (size and volume) of closed n-sets that hold in
them. On the two data sets, we have been using our implementation of Data-
Peeler [5] to compute all (unconstrained) closed n-sets. Figure 2 presents for
each attribute the number of patterns having a given size (for this attribute).
Unsurprisingly, most of them have a small number of elements per attribute
(left part of the curves). These patterns are commonly considered as a priori
uninteresting for numerous real-life extraction tasks. This confirms how useful a
minimal size constraint is.

More interestingly, there are patterns with large sets of attributes that seem
to emerge from these distributions. Indeed, some large sets of attributes are over-
represented w.r.t. the global trends of the distributions, patterns that can be
qualified as unexpected. Intuitively, it confirms the important role that minimal
size constraints can have for local pattern discovery from n-ary relations.

To provide a complementary inside view of the extracted closed patterns,
Figure 3 provides the number of closed patterns having a given “volume” (prod-
uct of sizes of every attribute set) for the two data sets. First of all, we can see
that a lot of patterns have a small volume, i.e., they contain only small sets of
attributes. Then, the global trend seems to be much more regular in comparison
with size distributions. This obversation suggests that a volume consraint is less
discriminant. The volume constraint should be used in addition to the minimal
size constraint. This way, we can slightly reduce the minimal size thresholds so
that we do not miss many potentially relevant patterns while keeping by means
of the minimal volume constraint an enough stringent criterion for “kicking out”
many patterns.
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Fig. 3. Proportion of patterns having a given volume (public bicycle network data on
the left and DistroWatch.com data on the right).



3.3 Outside view of patterns

We are now going to study closed pattern relevancy w.r.t. the outside of patterns.
Assessing how much a local pattern is good at representing strong associations
between sets of attributes w.r.t. the whole data set is assessed is rather new [6,
5]. The idea is to analyze for each pattern its outside slices (see Definition 3) and
to see how different/similar they are to the inside slices. In short, if a pattern
represents a strong association between its sets of attributes then outside slices
of the pattern must be either filled by ”0” values or at least must contain a lot of
”0” values. In other words, patterns are putatively relevant if inside and outside
slices are really different from each others in terms of the number of ”0” values.

Definition 3 (outside and inside slices). Let X = 〈X1, . . . , Xn〉 be a n-set.
Y = 〈Y 1, . . . , Y n〉 is a slice of X iff there exists i ∈ [1, n] s.t. ]Y i = 1 and
∀j ∈ 1 . . . n \ i, Y j = Xj. If Y i ⊆ Xi (respectively Y i ⊆ Di \Xi), Y is called an
inside (resp. outside) slice.

In the best case, we would want patterns whose outside slices contain only ”0”
values. This would mean that patterns capture all the associations contained in
the data set that involved elements of n− 1 attributes belonging to the pattern.
Figure 4 depicts an example of such a best-case pattern. We can see that all
their slices are either filled by ”0” (for outside slices) or by ”1” (for inside ones).
We denote this pattern type Tbc.

Worst-case patterns have almost no significant difference between inside and
outside slices in terms of the number of ”0” values they contain. In other words,
there are almost as many slices filled by ”1” values (inside ones), as slices with
one ”0” values, as slices with two ”0” values, etc. In that case, we cannot say
that these patterns represent strong associations between their sets of attributes.
Figure 5 presents three examples of such patterns. This pattern type is denoted
Twc.

Fig. 4. Best-case pattern type Tbc

Two other types of patterns are of interest. They are presented in Figure 6
(left and middle). The first pattern type Tgc1 has slices with at the same time



Fig. 5. Worst-case patterns Twc

”0” and ”1” values. But when they are not filled by ”1”, they contain a lot of ”0”
w.r.t. the volume of the slices. The second pattern type Tgc2 highlights a problem
with most local set patterns: data sets often contain values improperly set to
”0” (false negative) or ”1” (false positive). It commonly leads to an explosion
of the number of extracted patterns and pattern presented in Figure 6 (middle)
shows that some outside slices contain only a few of ”0” values. Intuitively, we
wish that this kind of outside slices can join the inside slices and become part
of a fault-tolerant pattern.

The last pattern type Toi is somehow a fusion of pattern types we described
as potentially interesting, i.e., Tbc, Tgc1 and Tgc2 .

Our goal is to discuss if it could be possible to declaratively specify and then
compute the following pattern types: Tbc, Tgc1 , Tgc2 and Toi.

Fig. 6. Pattern types Tgc1 , Tgc2 and Toi considered as interesting



3.4 Experimentation

We want to study how the extracted closed n-sets split into the different pattern
types. Once closed patterns have been computed on our two real data sets, we
assigned them to its closest pattern type considering each attribute separately.
Details of this slightly ad-hoc procedure are omitted, we are only interested in
the trends. Figure 7 presents the number of patterns that are assigned to each
pattern type for each attribute. First, we can see that there is an abundance of
worst-case patterns (Twc). In several cases, they even represent the majority of
patterns. The best-case pattern type Tbc only represents a small proportion of
patterns. Interestingly, patterns of type Toi are very present in our data sets.

Public bicycle network data Distrowatch.com data

Pattern type Day Period Departure Arrival Semester Distribution Country

Twc 2973 1406 3994 4263 857 1676 2800

Tbc 306 776 179 148 192 20 7

Tgc1 2999 5502 3975 3730 2131 1464 460

Tgc2 695 6 0 0 0 0 0

Toi 1539 822 364 371 91 111 4

Fig. 7. Distribution of pattern types for each attribute and for the two data sets.

Figures 8 and 9 show examples of extracted patterns of each type with the
same graphical representation as for Figures 4, 5, and 6.
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Fig. 8. Examples of patterns of types Tbc and Twc.

Now, the challenge is to declaratively define patterns presented in Figure 4
and Figure 6 by means of primitive constraints on n-sets. We also want to exploit
minimal and volume constraints and reduce, as much as possible, the number of
extracted patterns that are putatively spurious while keeping potentially relevant
ones.
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Fig. 9. Examples of patterns of types Tgc1 , Tgc2 and Toi.

4 Tackling the closed pattern relevancy issue

4.1 Using minimal size and area constraints

As explained in Section 3.2, it may be interesting to extract patterns with sets
of attributes of a minimal size or that cover a minimal number of tuples of the
input data set. For the volume constraint, it would be wiser, as it has been
done for the minimal size constraint, to compute a kind of relative volume, i.e.,
relative w.r.t. the size of the attribute domains.

Definition 4. The (relative) minimal size constraint on n-sets in a n-ary re-
lation is defined as Cµ−size(〈X1, . . . , Xn〉) ≡ ]X1 ≥ µ1 × ]D1 ∧ · · · ∧ ]Xn ≥
µn × ]Dn. The volume constraint on n-sets in a n-ary relation is defined as
Cν−volume(〈X1, . . . , Xn〉) ≡ ∏n

i=1
]Xi

]Di ≥ ν. Parameters µ1, · · · , µn and ν are
percentages.

These definitions are simple extensions of their counterpart studied for bi-
nary relations. Minimal size and volume constraints are anti-monotonic, what
enables search-space pruning and constraint propagation. However, it is much
more difficult to efficiently exploit them in an n-ary setting. The nature of the
n-set search-space and of these constraints forces to consider all the attributes
in a symmetric way. Indeed, they are connected to each others by n Galois con-
nections and not only one as in the binary case. It means that at least n − 1
attributes have to be enumerated. The size of the n − 1 sets of attributes can
then increase or decrease all along the enumeration. So we cannot consider any
attribute as more important than another one while this was not the case for
binary relation mining. Finally, every attribute must be enumerable and data
sets must be accessible from any attribute (especially slices). All these require-
ments make n-set mining algorithms difficult to design and to implement. To
the best of our knowledge, Data-Peeler is the only one that currently exploits
efficiently such constraints [5].

4.2 δ-isolated constraints

To extract patterns of type Tgc1 , we need to design a constraint which enforces
that every outside slices of closed patterns contain much more ”0” values than



inside patterns. For this purpose, we can use the constraint Cδ−isolated (see Def-
inition 5) which was first introduced in [5].

Definition 5. (Cδ−isolated) A n-set X = 〈X1, . . . , Xn〉 is isolated w.r.t. the at-
tribute Xi, denoted Cδ−isolated(X, i), iff ∀x ∈ Di \Xi, ](K \R) > δ× ]K where
K = X1 × · · · × {x} × . . . Xn and δ ∈ [0, 1[ is a user-defined parameter.

The parameter δ enables to set the required difference between inside and
outside slices. It is the minimal proportion of ”0” values allowed in an outside
slice. The higher δ, the more likely extracted closed patterns represent strong
associations between the sets of attributes and the less patterns are extracted.
Notice that Cδ−isolated ensures that patterns are closed. Indeed when δ = 0, we
have Cδ−isolated ≡ Cclosed.

Constraint Cδ−isolated is not (anti)-monotonic meaning that traditional tech-
niques which relies on properties of (anti)-monotonicity cannot be applied. Fortu-
nately it is piecewise (anti)-monotonic and Data-Peeler can exploit this class
of constraints to safely prune the search-space. To exploit a piecewise (anti)-
monotonic constraint, the n-set search-space must be explicitly computed and
stored for each generated candidate in the enumeration tree as done in [4]. Pro-
cessing a piecewise (anti)-monotonic constraint consists in rewriting it so that,
if the new form is satisfied, some candidate(s) deriving from the current one
(i.e., leaves of the enumeration tree whose ancestor is the current candidate)
may satisfy the original constraint. If not, safe pruning occurs. In the case of
Cδ−isolated (see Definition 5), the occurrence of K on the left side of < is replaced
by all elements in the current candidate and in the search space (upper-bound),
whereas its occurrence on the right side of < is only replaced by all elements in
the current candidate (lower-bound). For more detailed information, please refer
to [5].

4.3 Fault-tolerant patterns

Pattern type Tgc2 addresses a fundamental limitation of local pattern mining
methods. Within local patterns, the strength of the association between the sets
of attributes is often too strong in real-life data. Indeed, errors of measurement
and/or Boolean encoding techniques may lead to erroneous zero values which
will give rise to a combinatorial explosion of the number of extracted patterns.
Based on our expertise in real-life data mining, it is now clear that the extrac-
tion of local patterns, their post-processing and their interpretation is not that
relevant in noisy data which encode measured and/or computed relationships.
Our hypothesis is that the extraction of local patterns in binary or n-ary rela-
tions containing also some ”0” values might be useful and should be considered
as a valuable alternative for actionable pattern discovery [3]. The extraction of
fault-tolerant patterns in n-ary relations is a difficult problem, which has not
been tackled yet. Here is a short overview of some fault-tolerant pattern mining
algorithms focusing on the binary case.



The first proposed approaches concerned mono-dimensional patterns and/or
the use of heuristic techniques. In [21], the frequent set mining task is ex-
tended towards fault-tolerance. A level-wise algorithm is proposed but their
fault-tolerant property is not anti-monotonic while this is needed to achieve
tractability. Therefore, [21] provides a greedy algorithm leading to an incomplete
computation. [16] revisits this work. It looks for an anti-monotonic constraint
such that a level-wise algorithm can provide every set whose density of one values
is greater than δ in at least σ situations. Anti-monotonicity is obtained by en-
forcing that every subset of extracted sets satisfies the constraint as well. In [7],
the authors are interested in geometrical tiles (i.e., dense bi-sets which involve
contiguous elements given orders on both attributes). Their local optimization
algorithm is not deterministic and thus can not guarantee the global quality of
the extracted patterns. Furthermore, the hypothesis on built-in orders can not
be accepted on many data. Some fault-tolerant extensions of formal concepts
have been proposed afterwards.

The proposal in [15] concerns an extension which can be computed efficiently
but none of the appreciated properties are available. In [1], fault-tolerant formal
concepts are defined as maximal rectangles with a bounded number of ”0” values
per object and per item. The proposed algorithm is sound and complete. [19]
introduces a “zooming” approach on concept lattices. The so-called α-Galois lat-
tices exploit a partition on the objects to reduce the collection of the extracted
bi-sets. [12] statistically analyzes, the effect of a noise – following a Bernoulli
distribution – on the sizes and the numbers of exact itemsets. Both theoretically
and experimentally, the authors have proved that the application of such a noise
tends to generate exponentially more itemsets of sizes on the order of the log-
arithm of the original sizes. The AFI (Approximate Frequent Itemset) model,
they proposed, copes with this issue by allowing a pattern – named ETI (Error
Tolerant Itemset) – to contain, at most, a given proportion of ’0’ per transac-
tion, and, another, per item. Then, the authors have successfully identified an
anti-monotonic property able to prune sub-lattices of the search space, empty of
ETI. Finally, they built on it an extractor displaying a rather good behavior in
various synthetic and real-life settings.

5 Conclusion

Based on an empirical study and a background on local pattern discovery from
binary relations, we have been considering the declarative specification of a
priori relevancy for closed patterns that hold in n-ary relations. It has lead
to the definition of the pattern type denoted Toi that satisfies the constraint
Cfaul tolerant(X) ∧ Cδ−isolated(X) ∧ Cµ−size(X) ∧ Cν−volume(X).

The constraint Cfaul tolerant(X) specifies that we are looking for fault-tolerant
patterns, i.e., n-sets covering mostly ”1” values but with potentially some ”0”.
While such constraints have been studied in binary relations, it remains an open
problem in the general case of n-ary relations. We are currently studying it.



Constraint Cδ−isolated(X) enables to fix the difference between the number
of ”0” values inside and outside the patterns. In addition to this, it enforces the
closedness property. This constraint being piecewise (anti)-monotonic, can be
exploited adopting a specific search-space enumeration (see [5]).

Finally, we still consider the useful minimal size and volume constraints
Cµ−size(X) and Cν−volume(X)}. We saw that they can be efficiently exploited
when all the attributes are considered in a symmetric manner.

Acknowledgments. This work is partly funded by EU contract IST-FET IQ
FP6-516169 (“Inductive Queries for Mining Patterns and Models”) and by the
French contract ANR-07-MDCO-014 Bingo2 (“Knowledge Discovery For and By
Inductive Queries”).

References
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