
Classification by Pattern-Based Hierarchical Clustering

Hassan H. Malik, and John R. Kender

Department of Computer Science, Columbia University,

New York, NY 10027, USA
{hhm2104, jrk}@cs.columbia.edu

Abstract. In this paper, we propose CPHC, a semi-supervised classification
algorithm that uses a pattern-based cluster hierarchy as a direct means for
classification. All training and test instances are first clustered together using an
instance-driven pattern-based hierarchical clustering algorithm that allows each
instance to "vote" for its representative size-2 patterns in a way that balances
local pattern significance and global pattern interestingness. These patterns
form initial clusters and the rest of the cluster hierarchy is obtained by
following a unique iterative cluster refinement process that exploits local
information. The resulting cluster hierarchy is then used directly to classify test
instances, eliminating the need to train a classifier on an enhanced training set.
For each test instance, we first use the hierarchical structure to identify nodes
that contain the test instance, and then use the labels of co-existing training
instances, weighing them proportionately to their pattern lengths, to obtain the
most likely class label(s) for the test instance. In addition, CPHC increases the
chances of classifying isolated test instances by inducing a type of feature
transitivity. Results of experiments performed on 19 standard text and machine
learning datasets show that CPHC outperforms a number of existing
classification algorithms even with sparse (as low as 1%) training data.

Keywords: Semi-supervised classification, pattern-based hierarchical
clustering, transductive learning, interestingness measures.

1 Introduction

Traditional inductive classifiers are trained on instances (Section 1.1) in the training
set to produce a classification model (or knowledge base). This model is later used to
classify previously unseen test instances. Considering that these classifiers may not
fully exploit the distribution of test instances in the context of the whole dataset (i.e.,
by building the classification model only from the training instances, while ignoring
test instances altogether), a number of recent approaches [14, 23, 34] adopted a semi-
supervised model for classification. These approaches first apply an unsupervised, flat
clustering algorithm (i.e., k-means clustering) to cluster all (i.e., training and test)
instances in the dataset, and then use the resulting clustering solution to add additional
instances to the training set. A classifier is then trained on the enhanced training set.

However, the quality of clustering achieved by traditional flat clustering algorithms
(i.e., k-means clustering) relies heavily on the desired number of clusters (i.e., the

value of k), which must be known in advance. Unfortunately, setting a good value for
k can be non-trivial and no successful methods exist to automatically determine this
value for a new, previously unseen dataset. Therefore, flat clustering algorithms
require the user to provide the appropriate number of clusters. This approach,
however, may be problematic because users with different backgrounds and varying
levels of domain expertise may provide different values for k. Consequently, a
clustering solution obtained by one user may not satisfy the needs of other users. This
also means that an inappropriate value for k may adversely impact the quality of
classification achieved by existing semi-supervised classification algorithms [14, 23,
34].

In an attempt to avoid these problems, hierarchical clustering is widely used as a
practical alternative to flat clustering. Nodes in a hierarchical clustering solution are
organized in a general to specific fashion, and users have the option to analyze data at
various levels of abstraction by expanding and collapsing these nodes. Most
importantly, hierarchical clustering algorithms do not require the number of clusters
to be known in advance. The most successful hierarchical clustering algorithms
include agglomerative algorithms such as UPGMA [35] and partitioning based
algorithms such as bisecting k-means [35]. Additionally, a number of pattern-based
hierarchical clustering algorithms have achieved success on a variety of datasets [3,
10, 18, 31, 33].

Traditional agglomerative and partitioning-based hierarchical clustering algorithms
merge exactly two nodes at each step, which may result in a "mechanical looking"
hierarchy that may not resemble hierarchies produced by human experts. In addition,
these algorithms do not automatically generate cluster labels, and do not support soft
clustering. In contrast, pattern-based hierarchical clustering algorithms allow each
node in the cluster hierarchy to have a variable number of child nodes, which may in
general be closer to a real-life setting. Pattern-based hierarchical clustering algorithms
also automatically generate cluster labels (i.e., the set of binary attributes defining
each cluster), and more easily support soft clustering (i.e., a technique that assigns
instances to one or more clusters).

Considering these advantages, we propose CPHC (i.e., Classification by Pattern-
based Hierarchical Clustering), a novel semi-supervised classification algorithm that
uses a pattern-based cluster hierarchy as a direct means for classification. Unlike
existing semi-supervised classification algorithms, CPHC directly uses the resulting
cluster hierarchy to classify test instances and hence eliminates the extra training step.

The remainder of this section briefly introduces the notations used in this paper,
discusses the motivation for instance-driven pattern-based hierarchical clustering,
discusses the significance of pattern lengths in these hierarchies and also provides a
brief overview of the CPHC algorithm. Section 2 summarizes existing work that is
related to this research. Section 3 provides details on various steps in our
classification process. Section 4 compares the performance of CPHC against state-of-
the-art machine-learning and data-mining-based classification algorithms. Finally, we
conclude and discuss ideas for future work in Section 5.

1.1 Notations and Definitions

Let D be a dataset, I = {i1, i2, i3, …, in} be the complete set of distinct items (i.e.,
binary attributes) in D, and C = {c1, c2, c3, …, cm} be the complete set of distinct class
labels. An instance X is denoted as a triple <id, L, Y> such that id is an identifier that
uniquely identifies X, CL ⊆ represents the set of class labels associated with X (L=Φ
if X represents a test instance), and IY ⊆ represents the set of items in X. A pattern P
= {p1, p2, p3, …, pn} is a subset of I. The set of data that contains P is denoted as

}),,{(YPDYLidDP ⊆∈= . The support of a pattern P is defined as:

D
D

PSupport P=)(

1.2 An Alternative to Global Pattern-based Hierarchical Clustering

Most of the existing pattern-based hierarchical clustering algorithms [3, 10, 18, 31,
33] follow a similar framework. These algorithms first mine a set of globally
significant patterns (e.g., frequent itemsets [3, 10], closed frequent itemsets [33], high
h-confidence itemsets [31], or closed interesting itemsets [18]), and then use these
patterns to build a cluster hierarchy. Each pattern defines a cluster and instances are
assigned to clusters if they contain the pattern. Various heuristics are applied to prune
clusters and reduce or avoid overlap among clusters. We identified four major
problems with existing pattern-based hierarchical clustering algorithms.

First, these algorithms use a global user-defined threshold (e.g., minimum support
or minimum h-confidence) to prune an exponentially large search space, and to obtain
the final set of globally significant patterns used for clustering. Similar to the problem
of setting the value of k in flat clustering, setting a suitable value for this threshold can
be non-trivial. An inappropriate threshold value may result in too many or too few
patterns, with no coverage guarantees (i.e., some instances might not contain any
globally significant pattern).

Second, global pattern-mining algorithms (i.e., APRIORI [2], CLOSET+ [29],
Closed Interesting Itemset mining [18]) used by the existing pattern-based clustering
algorithms [3, 10, 18, 31, 33] only consider the presence or absence of patterns in
instances, and ignore within-instance pattern significance. This may be inappropriate
for real-life text and web datasets, where instances may contain a feature (i.e., an
item) more than once, and these locally frequent features may better represent the
main topic of the instance as compared to other, locally infrequent features.

Third, existing pattern-based clustering algorithms [14, 23, 34] tightly couple the
sizes of cluster labels with the node heights in the initial cluster hierarchy. In these
approaches, the first level in the cluster hierarchy contains all size-1 patterns, the
second level contains all size-2 patterns, and so on. This tight coupling is merely a
consequence of the way global patterns are discovered (i.e., by first discovering size-1
patterns, which are used to form size-2 candidates etc.), and does not necessarily
reflect a real-life setting. Users would surely appreciate more descriptive cluster
labels (i.e., labels that reflect the cluster structure of the dataset with all appropriate
patterns, regardless of their corresponding node heights).

Finally, many of the existing pattern-based hierarchical clustering algorithms apply
artificial constraints on soft clustering. Some of these algorithms [18, 33] require the
user to provide the number of clusters for each instance, and always select the
maximum number of clusters whenever possible for each instance. Similarly, some of
these algorithms [18, 33] only assign instances to their most specific pattern clusters.

In an attempt to address these issues, the authors have recently proposed IDHC
[19], an instance-driven approach to pattern-based hierarchical clustering, which we
review here. Instead of following the usual framework (i.e., first mining globally
significant patterns and then using these patterns to build the cluster hierarchy), IDHC
allows each instance to select a variable number of representative size-2 patterns in a
way that ensures an effective balance between local and global pattern significance.
The local (i.e., within instance) frequencies of the two items in a size-2 pattern are
averaged together to obtain the local pattern significance, and a contingency table-
based interestingness measure [12, 27] is used to obtain the global pattern
significance. These local and global significance scores are then multiplied to obtain
the overall pattern significance score with respect to the current instance. The patterns
are sorted with respect to their significance scores, and the instance selects a subset of
these patterns, the number of which is dynamically determined using a standard
deviation based scheme. This scheme selects up to maxK patterns with significance
scores that are greater than or equal to "min_std_dev" standard deviations from the
mean, where maxK and min_std_dev are user definable parameters. Since there is no
global pattern mining step, a global threshold is not needed. Furthermore, the total
number of size-2 patterns is guaranteed to be linear in the total number of instances in
the dataset, and all instances are guaranteed to be covered.

Once size-2 patterns are selected for all instances, each unique size-2 pattern forms
a top level cluster in the hierarchy, and instances are associated with all the pattern
clusters that they had selected, while maintaining instance-to-cluster pointers. These
initial clusters are then refined to obtain the rest of the cluster hierarchy by following
a novel iterative instance-driven process that simultaneously grows patterns and
clusters, and also inherently avoids combinatorial explosion.

In each iteration, this process utilizes instance-to-cluster pointers to prune duplicate
clusters in a purely local way (i.e., by only comparing cluster pairs that co-exist in an
instance’s list of cluster pointers). The labels of identified duplicates are merged and
assigned to the retained cluster. Clusters are refined in a similar fashion by first
identifying non-atomic cluster pairs (i.e., clusters that contain at least two instances)
from each instance’s list of cluster pointers, and then using these pairs to generate
clusters for the next level. The newly generated clusters contain instances that are
common to the originating cluster pair, and are assigned labels that represent the
union of labels of both clusters in the originating cluster pair. The instance-to-cluster
relationships are reestablished, and the refinement iteratively continues until all
clusters are refined. Finally, since pattern-based cluster hierarchies may contain a
large number of top level nodes, bisecting k-means (with I2 criterion function [35]) is
applied to merge these nodes.

This process produces more descriptive cluster labels than previous approaches,
without tightly coupling node label sizes with node heights in the initial cluster
hierarchy. In addition, this process does not force instances to their longest pattern
clusters and allows each instance to exist at multiple levels in cluster the hierarchy.

See Figure 3 for an example. Results in [19] show that IDHC outperforms existing
agglomerative, partitioning-based, and pattern-based hierarchical clustering
algorithms both in terms of FScore and entropy [35].

1.3 The Significance of Pattern Lengths in Pattern-based Cluster Hierarchies

The two most common metrics used to evaluate the quality of cluster hierarchies are
entropy and FScore. As noted in [35], entropy considers the distribution of instances
in all nodes of the tree whereas FScore only considers one (best) node for each ground
truth class, and ignores the quality of all other nodes. This means that a cluster
hierarchy with better (i.e., lower) entropy is expected to have a higher percentage of
nodes that contain most instances that belong to the same ground truth class. We
performed further experiments to analyze the class-label distributions over nodes with
varying pattern-lengths.

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
1 2 3 4 5 6 7 8 9 10

Node pattern size

A
ve

ra
ge

 e
nt

ro
py

Anneal
Adult
Sports
Classic

Fig. 1. Average entropies of nodes with respect to their pattern sizes on anneal, adult, sports
and classic datasets. Note that pattern size = 1 represent "logical" nodes obtained by applying
bisecting k-means to merge top-level nodes in the initial cluster hierarchy, as discussed in
Section 1.2. Least-squares regression confirmed that the relationship is essentially linear.

Intuitively, since the IDHC algorithm (Section 1.2) only assigns instances to nodes
(i.e., clusters) that represent their statistically selected patterns, we expected nodes
with longer patterns to have lower entropies. To validate our intuition, we applied the
IDHC algorithm to cluster two common machine learning datasets and two common
text datasets. We calculated the resulting individual node entropies, and grouped
together nodes that represented the same pattern sizes. We report average entropies of
each group in semi-log format in Figure 1. We observe that average node entropies

decreased (i.e., improved) monotonically and nearly linearly with increasing pattern-
sizes on all four datasets, confirming our intuition.

1.4 CPHC: A Novel Classification Algorithm

Motivated by this observation, we now propose in this paper CPHC (i.e.,
Classification by Pattern-based Hierarchical Clustering), a novel semi-supervised
classification algorithm that uses pattern-lengths as a way of establishing cluster (i.e.,
node) weights. CPHC first applies an unsupervised instance-driven pattern-based
hierarchical clustering algorithm (i.e., IDHC, Section 1.2) to the whole dataset to
produce a cluster hierarchy. Unlike existing semi-supervised classification algorithms
[14, 23, 34], CPHC directly uses the resulting cluster hierarchy to classify test
instances and hence eliminates the extra training step. To classify a test instance,
CPHC first uses the hierarchical structure to identify nodes that contain the test
instance, and then uses the labels of co-existing training instances, weighing them by
node pattern-lengths (i.e., by multiplying the node pattern-interestingness value with
the pattern-length) to obtain class label(s) for the test instance. This allows CPHC to
classify unlabeled test instances without making any assumptions about their
distribution in the dataset.

With results of experiments performed on 19 standard datasets, we show in Section
4 that CPHC outperforms a number of existing classification algorithms such as
FindSim, Naïve Bayes, BayesNets, Trees, ARC-BC, FOIL and CPAR, and achieves
classification accuracies that are comparable to (or better than) SVM and Harmony.
Most importantly, CPHC was effective even with sparse (as low as 1%) training data.

The main contributions include: 1) A novel semi-supervised classification
algorithm that uses a unified pattern-based cluster hierarchy as a direct means for
classification, 2) A novel feature selection method that ensures that all training and
test instances are covered by the selected features, 3) Elimination of the need to train
any classifier on the enhanced training set and 4) Utilization of pattern-lengths to
determine cluster (i.e., node) weights.

2 Related Work

Our work relates to existing rule and pattern-based classification algorithms, with
several important differences. Rule-induction-based classifiers like FOIL [22],
RIPPER [7], CPAR [32] and C4.5 [21] use heuristics such as Gini Index and
Information Gain (or Information Gain variants), to identify the best literal by which
to grow the current rule [30]. Many of them follow the sequential covering paradigm.
In contrast, association rule-based classifiers such as CBA [17], CAEP [8], CMAR
[16], ARC-BC [1], and DeEPs [15] first mine a large set of association rules that
satisfy user-defined support and confidence thresholds, and then extract the final set
of classification rules by following a database covering technique. With Harmony
[30], Wang and Karypis proposed an instance-centric approach to mine classification
rules. Harmony builds the classification model by directly mining some user-defined

number of highest-confidence rules for each training instance that satisfy minimum
support. Furthermore, Harmony simultaneously mines rules for all classes.

Our work also relates to a number of recently proposed approaches that use
clustering as a way of enhancing the training set. We mention only a few of those
approaches here. Raskutti et al. [23] used unlabeled data that is not part of the test set
to improve the performance of text classification. This is achieved by clustering
labeled and unlabeled instances together, and extracting new features from these
clusters to enhance the classification model. In another approach, Zeng et al. [34] first
clustered training and test sets together. The resulting clustering solution is then used
to obtain labels for some of the unlabeled test instances, and the newly labeled
instances are added to the training set. The extended training set is finally used to
train a classifier. In a similar approach [14], Kyriakopoulou and Kalamboukis first
clustered training and test sets together. The dataset is then augmented with meta
features extracted from the resulting clusters, and a classifier is trained on the
expanded dataset. In addition, a number of approaches like [20, 25] used clustering as
a way of improving the feature selection for classification. These semi-supervised
classification algorithms are similar to transductive learning [28] in that transductive
learning also allows the structure of the test set to play a role in classification.

Our CPHC algorithm is similar to existing pattern-based classification algorithms
in that we also use patterns. But unlike these algorithms, we do not attempt to
construct a classification model from the training set. Our approach also differs from
existing semi-supervised classification algorithms in that we do not use clustering as a
way of enhancing the training set. Instead, we directly utilize a cluster hierarchy to
classify test instances and therefore, avoid the extra step of training a classifier after
clustering. In addition, existing approaches do not use pattern lengths as a way of
establishing cluster weights.

Step 1: Select features (Section 3.1)
Input: training instances trn1..trnn
 test instances tst1..tstm
 Select features as explained in Section 3.1
Output: trn'1..trn'n, and tst'1..tst'm with reduced features
Step 2: Obtain a cluster hierarchy of training and test instances (Section 3.2)
Input: training instances trn'1..trn'n
 test instances tst'1..tst'm
 Apply the IDHC algorithm (Section 1.2) on (trn'1..trn'n U tst'1..tst'm)
Output: cluster hierarchy h
Step 3: Classify test instances (Section 3.3)
Input: cluster hierarchy h
 test instances tst1..tstm
 For each test instance tsti,
 Traverse h from root to leaves, identify set S of clusters that contain tsti
 Use clusters in S, and lengths of associated patterns as their weights to compute
 class scores (i.e., by multiplying the node pattern-interestingness value with the
 pattern-length)
 Assign the label of top-scoring class (or classes for multi-label problems) to tsti
Output: predicted labels of test instances tst1..tstm

Fig. 2. The CPHC Algorithm.

3 The CPHC Algorithm

In this Section, we explain various steps involved in the CPHC algorithm. Figure 2
summarizes these steps, and subsections 3.1-3.3 provide details on each step.

3.1 Step 1: Noise Elimination and Feature Selection

Studies [11, 24] show that reducing the dimensionality of the feature space may
significantly improve the effectiveness and scalability of traditional classification
algorithms, especially on high-dimensional datasets. Furthermore, dimensionality
reduction tends to reduce overfitting [24]. Pattern-based classification algorithms
equally benefit from dimensionality reduction, as both the quality and the number of
discovered patterns directly depends on the number of initial items.

Typically, features are selected by first sorting all available features in terms of
their significance, and then selecting top-j, or top-j-percent features (with a caveat that
selecting a suitable value for j is not straightforward). A recent study [11] evaluated
various measures to calculate feature significance and concluded that Information
Gain, Chi-Square and Bi-normal Separation worked equally well on a number of
datasets, with no statistically significant difference. Considering the comparatively
high computational cost of common feature selection methods, a recent hidden-web
classification algorithm [13] adopted an efficient, two-phase approach. In its first
phase, Zipf's law was applied as an inexpensive heuristic dimensionality reduction
technique to eliminate too frequent and too rare features. In its second phase, a more
expensive method was applied to select the final set of features.

Unfortunately, none of these approaches guarantee coverage (i.e., that each
instance in the corpus is represented by the selected features). Furthermore, the
optimal number (or percentage) of features (i.e., the value of j) needed to achieve
good classification results remains unclear. The literature [24] is inconclusive on n:
some studies suggest that the number of selected features should be same as the
number of training examples, and others suggest that feature selection may make
matters worse, especially when the number of available features is small.

Since CPHC first produces a cluster hierarchy of the whole dataset, using a
supervised feature selection method (i.e., Information Gain) alone may leave some
test instances unrepresented in the cluster hierarchy. That is some test instances
entirely consist of features that do not exist in any training instance. Traditional
classification algorithms may not be able to classify such test instances at all. CPHC
however, improves the chances of classifying such test instances by inducing a type
of feature transitivity: as long as these isolated test instances share some features with
more common test instances that overlap the training set, they have a chance of being
clustered together in a "logical" node (see Section 3.3 for details).

Considering these issues, we adopt a heuristic feature selection method that is
efficient, and ensures that the final set of selected features covers all training and test
instances. Furthermore, using the number of training instances, and the number of
available features, our method automatically estimates the number of features used for
classification (i.e., the value of j). Our method consists of the following four steps:

Step 1.1 (calculate j):
⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ×+

<
= otherwise

n
fnn

nff
j log

where n = number of training instances, and f = total number of available features.
This empirically derived formula ensures a reasonable base amount for low
dimensional datasets, while moderately growing this number for high dimensional
datasets.

Step 1.2 (select globally significant features): Heuristically select globally most
useful features by first applying Zipf's law to select features that are neither too
frequent, nor too infrequent (as these features are considered to be less significant). In
other words, select features that exist in less than max_supp, and more than min_supp
percent instances (where min_supp and are max_supp are user defined parameters).
Further refine these features by first sorting them in decreasing order of their
Information Gain values (computed using labeled training instances only), and then
adding the resulting top-j features to set S (i.e., the set of "selected" features).

Step 1.3 (ensure local coverage of training instances): For each instance X in the
training set represented as triple <id, L, Y> (Section 1.1), check if |Y ∩ S| ≥ t (where t
is user defined). If the condition is not met, sort all features in the current instance in
the decreasing order of their (TF * Information Gain), where TF = local term
frequency count in the instance. This "balances" the local significance (i.e., TF) and
the global significance (i.e., Information Gain). Finally, add the resulting top (t - |Y ∩
S|) features to set S.

Step 1.4 (ensure local coverage of test instances): For each instance X in the test
set represented as triple <id, L, Y>, check if |Y ∩ S| ≥ t. If the condition is not met, sort
all features in the current instance in the decreasing order of their Term Frequency
values. Finally, add the resulting top (t - |Y ∩ S|) features to set S.

3.2 Step 2: Hierarchical Clustering of Training and Test Instances

Once we have the features selected, we apply the IDHC algorithm (Section 1.2) on
the whole dataset to obtain a cluster hierarchy. The IDHC algorithm computes
interestingness values for selecting size-2 patterns for instances. However, in the
original algorithm these values are not stored, since cluster refinement was done
solely using instance-to-cluster pointers. But here, we need to use these values to
calculate class scores for test instances (Section 3.3), so we modified the IDHC
algorithm to track these values. In addition, we obtain interestingness values for
patterns longer than size-2 by averaging the interestingness values of patterns merged
during cluster refinement (Section 1.2). We also use the same process in a bottom-up
fashion to obtain interestingness values for "logical" nodes (i.e., clusters) generated
by merging the top-level nodes.

3.3 Step 3: Classifying Test Instances

We use the following four-step process to classify test instances:

Step 3.1: Given a test instance t, and hierarchy h, first initialize scores for all
classes. Next, traverse h from root to leaves, identifying the set S of nodes that contain
t.

Step 3.2: For each node e in S, compute w such that:
w = node-pattern-length * node-interestingness

This weight is based on the relationship presented in Figure 1.
Step 3.3: For each class c represented by at least one training instance in e

(considering all instances in the node as well as instances in all child nodes, as usual),
add x to the score of c such that:

e
ec

wx
 in instances training

 in label withinstances training =
×=

Step 3.4: For single-label classification problems, select the label of the class with
the highest score. For multi-label problems, select multiple classes using the
"weighted dominant factor-based" scheme in Section V(C-3) of [30], except replacing
all uses of confidence with the selected interestingness measure.

Fig. 3. A pattern-based cluster hierarchy obtained by applying the IDHC algorithm. The dotted
nodes are "logical" nodes obtained by applying bisecting k-means to merge the top-level nodes
in the initial cluster hierarchy.

Since traditional inductive classifiers only use features in training instances to

obtain the classification model, these algorithms may not be able to classify test
instances that entirely consist of features that do not exist in any training instance,
even if these isolated test instances share some features with more common test
instances that overlap the training set. CPHC improves the chances of classifying such
test instances by inducing a type of feature transitivity: as long as these isolated test
instances share some features with more common test instances that overlap the

training set, they have a chance of being clustered together in a "logical" node (i.e.,
node obtained by merging top-level nodes in the initial cluster hierarchy; Section 1.2).
As a result, the "logical" node may contribute towards score calculation.

Example: Figure 3 presents a pattern-based cluster hierarchy obtained by applying
the IDHC algorithm (Section 1.2). Let us assume that T3 and T5 are test instances that
share some features (i.e. feature "X"), and the remaining instances are training
instances. Let us also assume that T5 is an "isolated" test instance, i.e., T5 does not
share any features with the training set. Since T5 shares some features with T3 (i.e., a
test instance that overlaps with the training set), T3 and T5 are clustered together in
the logical node formed by merging the node with pattern "X, Y", and a logical node
that contains T3. This structure allows the parent of node with pattern "X, Y" to
predict class labels for T5.

4 Experimental Results

We conduced an extensive experimental study, and evaluated the performance of
CPHC on 19 datasets with varying characteristics. These datasets included both
standard text datasets, and discretized versions of numerical datasets from the UCI
machine learning dataset collection. For each dataset, we compared the classification
results obtained by CPHC against existing classification algorithms. In order to ensure
a fair comparison, we obtained data from the same resources, and used the same
evaluation metrics as used by the existing classifiers. We do not report the details of
the datasets used in our experiments here and refer the reader to [4, 5, 6].

4.1 Classification Performance

Experiments in [18, 19] indicate that Added Value, Chi-Square, Yule's Q, Mutual
Information, Certainty Factor and Conviction outperform other interestingness
measures [12, 27] in both global and instance-driven pattern-based hierarchical
clustering contexts. Since CPHC is also based on pattern-based hierarchical
clustering, we limited our experiments to these six measures. See [12, 27] for
computational details of these measures.

To set values for the parameters for the CPHC algorithm in a principled way, we
randomly selected a dataset, and tried a number of values for each parameter. The
values that resulted in best results on the randomly selected dataset were blindly used
across all datasets. Considering that text and UCI datasets are inherently different, we
selected one text dataset (i.e., sports) and one UCI dataset (i.e., auto) for the
parameter setting purpose. This resulted in selecting Chi-Square as the interestingness
measure for all text datasets, and Added Value as the interestingness measure for all
UCI datasets. In addition, we obtained min_std_dev = 1.5, and maxK = 11. Finally, we
fixed t = 10 on all datasets (Section 3.1), and fixed min_supp to 2 on all small UCI
datasets, and to 40 on all other datasets. Section 4.3 discusses further improvements
that may be realized by tuning min_std_dev and measure for individual datasets.

Additionally, all results reported here used the 10-fold cross validation scheme
(with averages of all 10 experiments reported, as usual), except on Reuters-21578

dataset, where we used the ModApte split [4] to ensure an apples-to-apples
comparison with results reported by existing studies.

4.1.1 Reuters- 21578 (ModApte) text dataset. Reuters-21578 is the most-
commonly used benchmark dataset to evaluate the performance of multi-class, multi-
label classification algorithms. Existing studies given in [9, 30] used the precision-
recall breakeven points on the ten largest categories, as the main performance criteria.
We calculated these breakeven points in a way similar to [30], i.e., by changing the
dominant factor, and keeping a fixed "score differentia factor" (i.e., 0.6). As
mentioned above, we fixed the interestingness measure to Chi-Square and
min_std_dev to 1.5.

Table 1 presents the results of this experiment. The results for Find-Sim, Naïve
Bayes, Bayes-Nets, Trees (i.e., Decision-Trees), and linear-SVM are obtained from
[9], while the results for ARC-BC are obtained from [1]. Note that [30] also used the
same results. Finally, the results for Harmony are obtained from Table VIII of [30].
Among the ten largest categories, CPHC achieved the best break-even performance
on 3 categories (i.e., crude, interest and money-fx), and ranked second on another 2
categories (i.e., acq and trade), with ranks 3-5 achieved on the remaining 4 categories.
Most significantly, CPHC outperformed all existing classification algorithms in terms
of micro-average performance, and also achieved a macro-average that is very close
to SVM. Micro-average is calculated as the weighted (proportional to the class size)
average of per-class precision-recall breakeven points, which results in an equal
weight for each document, thus favoring the performance on common classes. In
contrast, macro-average is obtained by first calculating the precision-recall breakpoint
values for all classes, and then averaging the results. Therefore, macro-average
equally weights all the classes, regardless of how many documents belong to a class.

Table 1. Breakeven performance on Reuters-21578.

Category Harmony Find Sim Naïve
Bayes

Bayes Nets Trees SVM
(linear)

ARC-BC CPHC

acq 95.3 64.7 87.8 88.3 89.7 93.6 90.9 94.5
corn 78.2 48.2 65.3 76.4 91.8 90.3 69.6 77.2
crude 85.7 70.1 79.5 79.6 85.0 88.9 77.9 90.7
earn 98.1 92.9 95.9 95.8 97.8 98.0 92.8 96.5
grain 91.8 67.5 78.8 81.4 85.0 94.6 68.8 91.1

interest 77.3 63.4 64.9 71.3 67.1 77.7 70.5 81.0
money-fx 80.5 46.7 56.6 58.8 66.2 74.5 70.5 84.3

ship 86.9 49.2 85.4 84.4 74.2 85.6 73.6 78.3
trade 88.4 65.1 63.9 69.0 72.5 75.9 68.0 87.9
wheat 62.8 68.9 69.7 82.7 92.5 91.8 84.8 83.6

micro-avg 92.0 64.6 81.5 85.0 88.4 92.0 82.1 92.1
macro-avg 84.5 63.7 74.8 78.8 82.2 87.1 76.7 86.5

4.1.2 UCI datasets. UCI machine learning datasets are also commonly used to
evaluate classification algorithms. We compared the performance of CPHC against
existing algorithms on 13 small and 2 large UCI datasets. To ensure fairness, we used
the same pre-discretized versions of these datasets as used in [30], obtained from [6].

Table 2. Classification accuracies on 13 small UCI datasets.

 FOIL CPAR SVM Harmony CPHC
anneal 96.90 90.20 83.83 91.51 93.82
auto 46.10 48.00 55.50 61.00 73.00

breast 94.40 94.80 96.80 92.42 93.33
glass 49.30 48.00 46.00 49.80 70.00
heart 57.40 51.10 60.36 56.46 58.33

hepatitus 77.50 76.50 81.83 83.16 83.33
horsecolic 83.50 82.30 83.31 82.53 73.61
ionoSphere 89.50 92.90 89.44 92.03 92.57

iris 94.00 94.70 94.67 93.32 94.67
pima 73.80 75.60 74.18 72.34 73.16

tic-tac-toe 96.00 72.20 70.78 92.29 72.74
wine 86.40 92.50 94.90 91.94 88.24
zoo 96.00 96.00 86.00 93.00 97.00

average 80.06 78.06 78.28 80.91 81.83

Table 3. Classification accuracies on 2 large UCI datasets.

 FOIL CPAR SVM Harmony CPHC
adult 82.50 76.70 84.16 81.90 84.95

mushroom 99.50 98.80 99.67 99.94 99.98
average 91.00 87.85 91.92 90.92 92.46

Tables 2 and 3 present the results of this experiment. The results for FOIL, CPAR,

SVM (i.e., rbf-kernel), and Harmony are obtained from tables XII and XV of [30],
which also notes that C4.5, Ripper, and association-based algorithms did not perform
as well on these datasets. CPHC outperformed all existing algorithms, with the
highest average classification accuracies.

Table 4. Classification accuracy on the Sports dataset. SVM and Harmony used various values
for C and minimum support. CPHC used various values for min_supp.

Harmony (Min support) SVM (C) CPHC (min_supp)
75 100 125 150 2.0 1.0 0.5 0.25 5 10 20 30

94.2 94.9 94.3 94.1 95.79 95.79 95.76 95.72 96.40 96.24 96.12 95.98

4.1.3 Sports text dataset. We also evaluated the classification accuracy of CPHC on
the Sports text dataset (i.e., TREC, original source: San Jose Mercury News). The
results of SVM and Harmony are obtained from [30], which used various parameter
values to tune these algorithms. We follow a similar approach and used various values
for min_supp, which is our noise elimination parameter used in the feature selection
step (Section 3.1). The values for all other parameters were kept fixed. From Table 4,
we observe that CPHC resulted in better classification accuracies than both of the
existing algorithms.

Classic

20

30

40

50

60

70

80

90

100

90% 50% 20% 10% 5% 1% 0.50% 0.25%

Percentage of instances used for training

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

y

CPHC
Harmony

Re0

20

30

40

50

60

70

80

90

100

90% 50% 20% 10% 5% 1%

Percentage of instances used for training

Av
er

ag
e

cl
as

si
fic

at
io

n
ac

cu
ra

y

CPHC
Harmony

Fig. 4. Classification accuracies on Classic and Re0 datasets with increasingly sparser training
data. The non-linear scale is approximately logarithmic.

4.2 Impact of the Percentage of Training Instances on Classification
Performance

To evaluate how CPHC reacts to a decreasing ratio of training instances to test
instances, we performed a number of experiments on the Classic and Re0 datasets
obtained from [5]. In each experiment, we randomly selected p% of the instances as
the training set (see Figure 4 for the values of p used on each dataset), and the rest as
test set. For each value of p, we executed CPHC ten times and report the average
classification accuracies. For comparison, we executed Harmony (i.e., executables
obtained from the authors of [30]) in a similar fashion and report the average
accuracies in Figure 4. Note that Harmony uses a minimum support threshold which
we fixed to 1% of the training instances in each execution.

From Figure 4, we observe that the two algorithms yielded similar accuracies when
a large percentage of the dataset was used as the training set. However, CPHC
significantly outperformed Harmony as the size of the training set decreased. On
Classic and Re0 datasets, the maximum difference in classification accuracy was as
great as 53% and 31% respectively! It appears that CPHC's ability to classify
"isolated" test instances, as discussed in Section 3.3, is responsible for this difference.

4.3 Optional Parameter Tuning

Table XVI of [30] presents the classification accuracies achieved on the 13 small UCI
datasets by tuning SVM and Harmony using various parameter values. We follow a
similar approach to demonstrate additional gains that might be realized by tuning our
parameters. For this purpose, we varied min_std_dev between 0.9 and 2.0, in uniform
intervals of 0.1, and used six different interestingness measures.

Table 5. Tuned accuracies on UCI datasets.

 Harmony SVM CPHC min_std_dev Interestingness measure
anneal 95.65 97.26 95.73 0.9 Certainty Factor
auto 61.50 58.90 73.00 1.2 Added Value

breast 96.14 95.09 94.06 1.3 YulesQ
glass 49.80 50.53 75.71 1.0 YulesQ
heart 58.40 57.46 62.00 1.3 Certainty Factor

hepatitis 85.99 85.50 84.67 1.8 Added Value
horsecolic 84.64 84.06 76.39 1.4 YulesQ
ionosphere 93.45 89.43 92.29 1.5 Added Value

iris 95.99 93.33 95.33 1.5 Mutual Information
pima 73.79 71.06 75.92 1.0 Chi Square

Tic-tac-toe 94.09 88.52 73.16 1.2 YulesQ
wine 94.90 97.25 95.88 1.0 Chi Square
zoo 96.00 97.00 98.00 1.1 Added Value

average 83.1 81.95 84.01

Table 5 presents the best classification accuracy achieved on each dataset, along
with the corresponding parameter values. For comparison sake, we also include fully

tuned Harmony and SVM accuracies as reported in [30]. We observe that CPHC
achieved better accuracies on 5/13 datasets, and also resulted in the highest average
classification accuracy across all 13 datasets.

5 Conclusions and Future Work

The semi-supervised approach first clusters both the training and test sets together
into a single cluster hierarchy, and then uses this hierarchy as a direct means for
classification; this eliminates the need to train a classifier on an enhanced training set.
In addition, this approach uses a novel feature selection method that ensures that all
training and test instances are covered by the selected features, uses parameters that
are robust across datasets with varying characteristics, and also has the positive side
effect of improving the chances of classifying isolated test instances on sparse
training data by inducing a form of feature transitivity. Lastly, this approach is very
robust on very sparse training data.

In the future, we would like to compare CPHC against transductive learning
algorithms, perform theoretical analysis to confirm our empirically observed
relationship between entropy values and node pattern lengths, and extend CPHC to
work in online scenarios by dynamically maintaining the cluster hierarchy as test
instances arrives.

6 Acknowledgements

We would like to thank Prof. Howard Hamilton, and the anonymous reviewers for
their useful comments that helped a lot in improving this paper.

References

1. Antonie, M., Zaiane, O.: Text Document Categorization by Term Association. In: Second
IEEE International Conference on Data Mining (2002)

2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases.
In: 20th International Conference on Very Large Databases, pp. 487-499 (1994)

3. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: International Conference
on Knowledge Discovery and Data Mining, pp. 436-442 (2002)

4. Bergsma, S.: The Reuters-21578 (ModApte) dataset. Dept. of Computer Science, University
of Alberta, http://www.cs.ualberta.ca/~bergsma/HTML/Courses/650/

5. Cluto. http://glaros.dtc.umn.edu/gkhome/views/cluto
6. Coenen, F.: The LUCS-KDD Implementations of the FOIL, PRM, and CPAR algorithms.

http://www.csc.liv.ac.uk/~frans/KDD/Software
7. Cohen, W.: Fast effective rule induction. In: 12th International Conference on Machine

Learning (1995)
8. Dong, G., Zhang, X., Wang, L., Li, J.: CAEP: Classification by aggregating emerging

patterns. Discovery Science, Volume 1721 (1999)

9. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive Learning Algorithms and
Representations for Text Categorization. In seventh international conference on Information
and knowledge management, pp. 148-155 (1998)

10. Fung, B., Wang, K., Ester, M.: Hierarchical document clustering using frequent itemsets. In:
SIAM International Conference on Data Mining, pp. 59-70 (2003)

11. Gabrilovich, E., Markovitch, S.: Text Categorization with Many Redundant Features: Using
Aggressive Feature Selection to Make SVMs Competitive with C4.5. In: Twenty-First
International Conference on Machine Learning, pp. 321-328 (2004)

12. Geng, L., Hamilton, H. J.: Interestingness Measures for Data Mining: A Survey, ACM
Computing Surveys, Volume 38, No. 3 (2006)

13. Gravano, L., Ipeirotis, P., Sahami, M.: QProber: A System for Automatic Classification of
Hidden-Web Databases. ACM Transactions on Information Systems, Volume 21, No. 1
(2003)

14. Kyriakopoulou, A., Kalamboukis, T.: Using clustering to enhance text classification. In:
30th annual international ACM SIGIR conference on Research and development in
information retrieval (2007)

15. Li, J., Dong, G., Ramamohanarao, K., and Wong, L., DeEPs: A New Instance based
Discovery and Classification System. Machine Learning, Volume 54, No. 2 (2004)

16. Li, W., Han, J., Pei, J.: CMAR: Accurate and Efficient Classification based on multiple
class-association rules. In: First IEEE International Conference on Data Mining (2001)

17. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: Fourth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (1998)

18. Malik, H. H., Kender, J. R.: High Quality, Efficient Hierarchical Document Clustering
Using Closed Interesting Itemsets. In: Sixth IEEE International Conference on Data Mining,
pp. 991-996 (2006)

19. Malik, H. H., Kender, J. R.: Instance Driven Hierarchical Clustering of Document
Collections. In: From Local Patterns to Global Models Workshop, European Conference on
Machine Learning and Practice of Knowledge Discovery in Databases (2008)

20. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of English words. In: 31st Annual
Meeting of the Association for Computational Linguistics (1993)

21. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufman, ISBN:1-55860-238-0
(1993)

22. Quinlan, J., Cameron-Jones, R.: FOIL: A Midterm Report. In: European Conference on
Machine Learning (1993)

23. Raskutti, B., Ferr, H., Kowalczyk, A.: Using unlabeled data for text classification through
addition of cluster parameters. In: 9th International Conference on Machine Learning (2002)

24. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing
Surveys, Volume 34, No. 1 (2002)

25. Slonim, N., Tishby, N.: The power of word clustering for text classification. In: European
Colloquium on IR Research (2001)

26. Turns out some dinosaurs could swim, http://www.cnn.com
27. Tan, P., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association

patterns. In: 8th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 32–41 (2002)

28. Vapnik, V. N.: Statistical Learning Theory. Wiley, ISBN: 0-47-103003-1 (1998)
29. Wang, J., Han, J., Pei, J.: CLOSET+: Searching for the Best Strategies for Mining Frequent

Closed Itemsets. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2003)

30. Wang, J., Karypis, G.: On Mining Instance-Centric Classification Rules. IEEE Transactions
on Knowledge and Data Engineering, Volume 18, No. 11 (2006)

31. Xiong, H., Steinbach, M., Tan, P.-N., Kumar, V.: HICAP: Hierarchical Clustering with
Pattern Preservation. In: SIAM International Conference on Data Mining (2004)

32. Yin, X., Han, J.: CPAR: Classification based on Predictive Association Rules. In: SIAM
International Conference on Data Mining (2003)

33. Yu, H., Searsmith, D., Li, X., Han, J.: Scalable Construction of Topic Directory with
Nonparametric Closed Termset Mining. In: Fourth IEEE International Conference on Data
Mining, pp. 563-566 (2004)

34. Zeng, H. J., Wang, X.H., Chen, Z., Lu, H., Ma, W. Y.: CBC: Clustering based text
classification requiring minimal labeled data. In: Third IEEE International Conference on
Data Mining (2003)

35. Zhao, Y., Karypis, G.: Hierarchical Clustering Algorithms for Document Datasets. Data
Mining and Knowledge Discovery, Volume 10, pp. 141--168, No. 2 (2005)

