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Darko Čerepnalkoski1, Katerina Taškova1, Ljupčo Todorovski2, and
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Abstract. In this paper, we explore different modeling scenarios for
inducing process-based models from multiple data sets. Namely, when
modeling ecosystems, environmentalists expect a single model structure
to explain system behavior among different yearly seasons, while the val-
ues of the constant model parameters may vary from season to season.
We confront this modeling scenario with several others corresponding to
multiple (one per season) structure or alternative single-structure mod-
els. The empirical evaluation and comparison of these scenarios on two
tasks of modeling aquatic ecosystems confirm the expectations: single
model structure can explain long-term system behavior, but the values
of the model parameters for different seasons are significantly different.

1 Introduction

Models are useful analysis tools that scientists and engineers use to explain the
observed and predict the future behavior of a system. A variety of modeling
formalisms exist, ranging from purely qualitative ones, that focus on explaining
the relations between system entities, to purely quantitative formalisms, based on
equations, usually used to simulate/predict the future system behavior. Process-
based models [4] integrate aspects of both qualitative and quantitative models.
On one hand, a process model consists of processes that causally link system
variables and entities, possibly through unobserved theoretical terms. On the
other hand, each process has a quantitative model; when put together these
models serve as an equation-based model that allows for a quantitative analysis
(simulation and prediction) of system behavior.

Establishing a process-based model of an observed system involves two tasks.
The first, often referred to as structure identification, is to identify the processes
that govern the behavior of the observed system. Processes specify generic func-
tional forms of the relations between system variables; when put together they
define the structure of the model equations. The second task is to estimate the
values of the model constant parameters that lead to an optimal match between
the measured values of the system variables and the values obtained by simulat-
ing the model. Existing algorithms for process-based modeling combine heuristic



search through the space of candidate model structures (constrained by domain
knowledge) to identify model structure with non-linear optimization methods
for estimating the values of the model constant parameters [8, 4].

In this paper, we deal with the problem of inducing process-based models
from multiple data sets. When experts build a model from multiple data sets of
the observed system collected over longer periods of time, they expect a single
model structure to explain the overall behavior of the system. However, different
values of the constant model parameters may be optimal for different data sets.
A specific modeling task we address in this paper is modeling the change of
population densities in an ecosystem. Ecologists collect data about an ecosystem
over consecutive yearly seasons of and would expect a single model structure to
explain the food web between the different populations (e.g., species in a lake),
while the constant model parameters specifying the particular details of food
web interactions can change from year to year. Existing algorithms for inducing
process models do not support such modeling scenario, leaving ecologists with
two choices. The first is to induce a single model with the same structure and
parameter values for all data sets, which makes an unrealistic assumption that
model parameters do not change. The second is to induce a separate model
(both structure and parameters) for each data set. However, realistic modeling
assumptions lead to an in between scenario: inducing a single model structure
with multiple parameter settings, one for each of the corresponding data sets.
We developed a modification of the Lagramge algorithm [8] for inducing process-
based models that supports this scenario.

In the following section, we introduce the formalism of process-based mod-
els and briefly present the algorithms for inducing them with the focus on the
changes necessary to support the specific modeling scenario for dealing with
multiple data sets outlined above. Section 3 reports the results of the empirical
evaluation of the method. In Section 4, we conclude the paper, put the presented
method in the context of related research and outline further work.

2 Process-Based Modeling

Process-based models [4] integrate explanatory aspect of the qualitative models
with quantitative equations that allow effective simulation and/or prediction of
the (future) system behavior. When dealing with dynamic systems, scientists and
engineers often refer to processes that govern system dynamics and entities that
are influenced by those processes. Processes causally link system variables and
entities, possibly through unobserved theoretical terms. To allow quantitative
analysis of system behavior process models specify quantitative model for each
process; when put together these models serve as a model that takes a form of
ordinary differential equations.

Table 1 presents a process model of a phytoplankton growth in an aquatic
environment (lake). The four processes explain the change in concentration of
phytoplankton through time. Two other entities, environment e and inorganic
nutrient nitro, have important impact on the phytoplankton dynamics. The



Table 1. A process model of a phytoplankton growth in an aquatic environment. The
notation d

dt
X indicates the derivative of X with respect to time t.

model phytoplankton dynamics

entities phyto{primary producer}, nitro{nutrient}, e{environment}

process phyto growth
entities phyto
equations d

dt
phyto.conc = 0.1 · phyto.growth rate · phyto.conc

process nitro growth limitation
entities phyto, nitro
equations phyto.growth rate = nitro.conc / (nitro.conc + 5)

process temperature growth limitation
entities phyto, e
equations phyto.growth rate = (e.water temp - 4) / (21 - 4)

process phyto loss
entities phyto
equations d

dt
phyto.conc = -0.5 · phyto.conc

Table 2. A generic entity and a generic process for modeling phytoplankton growth
in any ecosystem.

generic entity primary producer
variables conc{sum}, growth rate{prod}
constants max growth rate{0,Inf}

generic process primary producer growth
entities P
equations d

dt
P.conc = P.max growth rate · P.growth rate · P.conc

phyto growth process together with the following two, nitro growth limitation
and temperature growth limiation, state the rate of phytoplankton growth and
specifies how environment (in particular, water temperature) and the concen-
tration of inorganic nutrient limit the growth. The process of phyto loss refers
to an unlimited exponential mortality of the phytoplankton population. These
processes identify the main driving forces that influence the phytoplankton dy-
namics in the observed aquatic environment and the limiting factors for the
phytoplankton growth.

In addition to this qualitative explanatory information, the process model
from Table 1 specifies the quantitative (equation) models for each process. Com-
bined together, these equations give the model of the phytoplankton growth.
The issue that is immediate obvious is combining the influences of several pro-
cesses on the same variable. By default, the influences are summed up, but other
aggregation function can be specified by the expert. This specification is part of
the background knowledge for building process models. Note that all the specific



entities and processes in the model are instances of more general forms, generic
processes and entities, that can apply to any ecosystem. These generic processes
and entities serve as background knowledge for induction of process models. Ta-
ble 2 includes examples of a generic entity and a generic process for modeling
phytoplankton growth.

The generic process primary producer growth is the general form of the phy-
toplankton growth process; note the replacement of the constant parameter value
0.1 with a generic constant P.max growth rate and the entity phyto with a typed
identifier P. The generic entity primary producer corresponds to the specific en-
tity phyto from the model of phytoplankton growth. The generic entity includes
three properties that correspond to the (current) concentration, growth rate,
and maximal growth rate of the primary producer. The first two properties vary
through time, while the third correspond to a model constant parameter (the
value of which should be between 0 and infinity, i.e., positive). Note that multi-
ple influences on the variable conc are summed up, while those on the variable
growth rate are multiplied (declarations {sum} and {prod}). Following these ag-
gregation functions, we can combine the models of the individual processes from
the model in Table 1 into the following differential equation:

d

dt
phyto = 0.1 · nitro.conc

nitro.conc + 5
· e.water temp− 4

21− 4
· phyto− 0.5 · phyto

where, for simplicity, we replaced phyto.conc with phyto. Given the initial concen-
tration of phytoplankton, one can simulate this equation to produce trajectory
that reflects phytoplankton dynamics.

After introducing the notion of process-based models, we can now present
the task of inductive process modeling as:

Given
– observations of a set of continuous variables in consecutive time points

(in the example above, this set would include concentrations of phyto-
plankton and nitrogen as well as water temperature);

– a set of entities expected to be included in the model;
– generic processes and entities specifying the modeling knowledge in the

domain at hand;
Find a specific process-based model that explains the observed data (and pre-

dicts unseen data accurately).

There are several algorithms for inducing process-based models from time
course data. Lagramge 2.0 [8] learns process-based models by transforming the
modeling knowledge (generic processes and entities along with the specific model
entities) into a grammar that specifies the set of candidate models for the partic-
ular task at hand. Lagramge than search this space and find an optimal model
for the observed system behavior (time course data). IPM [4], on the contrary,
performs heuristic search directly through the space of process-based models.
Given the set of specific model entities, IPM generate all the possible instances



of the generic processes and uses them as model components. In the next step,
IPM searches through the space of model components combinations to find the
optimal one. To avoid combinatorial explosion due to exploring all possible com-
binations, HIPM [7] introduces structural constraints specifying basic modeling
rules in the domain at hand, such as ”these two processes are mutually exclu-
sive” or ”these two processes should always be together in the model”. All three
algorithms employ standard non-linear least squares method [5] to fit the values
of the constant model parameters against observed trajectories.

3 Handling Multiple Data Sets

In this paper, we explore different modeling scenarios that involve induction
of process-based models from multiple data sets. In the domain of modeling
aquatic ecosystems multiple data sets correspond to multiple ecosystem seasons.
Ecologists expect the model for different data sets to have the same structure
(same set of processes); only values of the constant parameters may change from
year to year. This scenario is not directly supported by the inductive process
modeling algorithms surveyed in the previous section. We altered the procedure
for model evaluation in Lagramge, so it fits a separate set of constant parameter
values for each data set, and sums up the model error estimates.

Having altered Lagramge, we have four modeling scenarios to explore. The
first base-line scenario is to handle each data set separately and induce a sep-
arate process-model for each. In this case, we get process-models with dif-
ferent structures and parameter values; we refer to this scenario as multiple-
structures, multiple-parameter-settings (MS-MP). The second scenario is the
single-structure, multiple-parameter-settings one, we introduced in the previous
paragraph. Following this scenario we get a single model structure that explains
system behavior. The third scenario explores another way to get a single model
structure for all the data sets: single-structure, single-parameter-settings (SS-
SP) scenario. This approach handles multiple data sets as a single one and thus
makes an (often unrealistic) assumption that model parameters do not change
across data sets. Finally, we can also follow the SS-SP scenario to get the overall
model structure and then fit the model parameters on each data set separately.
This is an alternative SS-MP approach, that we will refer to as SS-MP*.

We empirically evaluate and compare the alternative modeling scenarios to
two ecological tasks of modeling phytoplankton dynamics in lakes Bled [2] and
Greifensee [1]. We have six data sets for Bled corresponding to one-year seasons
from 1997 to 2002 and four data sets for Greifensee from 1988 to 1991. In both
cases, we have regular measurements of concentrations of nutrients, plankton
species, and environmental variables, such as water temperature and light inten-
sity. Given these data, the task is to induce a process-based model for the change
of the phytoplankton concentration. We compare the performance of the models
obtained following the different modeling scenarios in terms of model accuracy
and model complexity. We measure the model accuracy using the correlation
coefficient between the measured values of phytoplankton concentration and the



Table 3. Coefficient of correlation between the measured values of phytoplankton
concentration and the values obtained by simulating the four models (induced following
the four modeling scenarios) on the one-year data sets for the lakes Bled and Greifensee.

Lake Bled Lake Griefensee
Modeling scenario 1997 1998 1999 2000 2001 2002 1988 1989 1990 1991

MS-MP 0.98 0.93 0.91 0.97 0.98 0.99 0.70 0.92 0.94 0.93
SS-MP 0.88 0.89 0.95 0.96 0.95 0.98 0.62 0.84 0.94 0.95
SS-MP* 0.21 0.87 0.88 0.33 0.96 0.91 0.47 0.50 0.57 0.52
SS-SP -0.19 -0.15 0.90 0.77 -0.80 0.46 0.37 0.55 0.72 0.51

Table 4. Complexities of the models (in terms of number of different processes) induced
from multiple data sets for the lakes Bled and Greifensee.

Modeling scenario Bled (1997-2002) Greifensee (1988-1991)

MS-MP 22 15
SS-MP, SS-MP*, and SS-SP 9 8

values obtained with simulating the induced model. We measure the model com-
plexity as number of different processes included in the induced models.

Table 3 compares the performance of the process-based models in terms of
the correlation coefficient between the measured values of phytoplankton con-
centration and the values obtained by simulating the models induced with La-
gramge. Note that high values indicate high model performance (the value of
1 indicates a perfect match between measurement and simulation). The results
confirm the expectations: The SS-SP scenario does not work, since forcing a
single parameter setting for all years leads to poor model performance. As one
could expect, models that fit multiple structures (MS-MP) are better than those
that fit a single one (SS-SP and SS-MP), with rare exceptions due to the dif-
ference between the heuristic used to guide search in Lagramge and the metric
used to evaluate models. However, the performance difference between MS-MP
and SS-MP is insignificant, while we observe a significant performance difference
between SS-MP and SS-SP.3 Note furthermore that the idea to fit the structure
on all the data sets at once and then re-fit the parameter values for each data
set separately (SS-MP*) does not really work and compares poorly to the more
complex SS-MP scenario. In sum, a single structure can well explain the dynam-
ics of phytoplankton growth in different seasons; however, seasons have strong
influence on the values of the model parameters.

Table 4 compares the complexities of the models induced following the four
scenarios. For the MS-MP scenario, we counted the number of different processes
appearing in the model structures induced for different years, while for all the

3 We performed single-tailed t-test with 90% significance threshold to test the statis-
tical significance of the differences.



other (SS) scenarios, we counted the number of processes in the single structure
induced. Again, the results are as expected: the complexity of the single-structure
model is half the one of the multi-structure models.

4 Conclusion and Further Work

In this paper, we empirically evaluate and compare four modeling scenarios for
inducing process-based models from multiple data sets on two tasks of modeling
phytoplankton dynamics in lakes. The comparison confirms the initial hypothe-
sis of environmentalists that there should be a single model structure capable of
explaining the ecosystem dynamics in all the seasons; however model parameter
can significantly change between the seasons. Furthermore, comparison shows
that single-structure model is much simpler in terms of number of processes
needed to explain system dynamics. Finally, another contribution is the devel-
opment of a modified Lagramge algorithm for inducing process-based models to
support such single-structure multiple-parameter-settings scenario.

Note that the issue of inducing models from multiple data sets have been
previously addressed in [3]. However, there the focus is on integrating the struc-
ture of multiple process-based models induced from different samples of the same
data set. In contrast, here we handle multiple data sets (not random samples
of the same one) and explore the ways how to get single process-based model
structure explaining all of them at the same time.

Immediate direction for further work is more elaborate empirical evaluation
of the modeling scenarios. Note that in the preliminary experiments presented
here, we have not tested the predictive performance of the models on unseen
test data; these experiments would provide a proper and complete evaluation
of modeling scenarios presented here. Further direction for further work is to
analyze the relation between the complexity of the models obtained following
the different scenarios and their performance. The minimum description length
principle [6] can be used as a basis for developing a framework for principled
comparison of process-based models induced from multiple data sets in terms of
both performance and complexity.
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Machine Learning Journal 71, 1-32 (2008)

5. Bunch, D. S., Gay, D. M., Welsch, R. E.: Algorithm717:subroutines for maximum
likelihood and quasi-likelihood estimation of parameters in nonlinear regression mod-
els. ACM Transactions on Mathematical Software 19, 109–130 (1993)

6. Grnwald, P. D.: The Minimum Description Length Principle. MIT Press, Cam-
bridge, MA (2007)

7. Todorovski, L., Bridewell, W., Shiran, O., Langley P.: Inducing hierarchical process
models in dynamic domains. In: Proceedings of the Twentieth National Conference
on Artificial Intelligence, pp. 892–897. AAAI Press, Pittsburgh, PA (2005)
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