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Abstract. This study presents an unsupervised feature selection ap-
proach for the discovery of significant patterns in seismic wavefields. We
iteratively reduce the number of features generated from seismic time
series by first considering significance of individual features. Significance
testing is done by assessing the randomness of the time series with the
Wald-Wolfowitz runs test and by comparing observed and theoretical
variability of features. In a second step the in-between feature depen-
dencies are assessed based on correlation hunting in feature subsets us-
ing Self-Organizing Maps (SOMs). We show the improved discriminative
power of our procedure compared to manually selected feature subsets
by cross-validation applied to synthetic seismic wavefield data. Further-
more, we apply the method to real-world data with the aim to define
suitable features for earthquake detection and seismic phase classifica-
tion in seismic recordings.
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1 Introduction

Our study is motivated by classification and detection problems in seismology.
Due to the high number of receiver networks monitoring earthquakes worldwide,
a large amount of data is produced consisting of time histories of ground motion
in different spatial directions. Automatic detection and classification of earth-
quakes is required in order to prepare data for investigation of the subsurface
earth structure and to develop automatic warning systems e.g. at volcanos or
to monitor the compliance with the nuclear test band treaty (CTBTO) [1–4].
For these purposes, features are generated from the raw recordings. Since there
are a lot of different, common approaches in seismology, it is not easy to define
an optimal, discriminative and significant feature set. Thus, automatic feature
selection is mandatory. In this study we use 7 common seismic feature gener-
ation methods which are all listed in Table 1. All in all we have a set of 159
features. A feature is computed for a short time window of the seismogram (6.5
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s). We employ unsupervised learning techniques since seismologists often deal
with unknown, complexly composed data. As a first learning step unsupervised
feature selection will aid further processing.

Table 1. Seismic feature generation methods, features and number features.

1 Frequency-wavenumber analysis [11]
Spatial coherency (3 frequency bands and 3 spatial components): 9 features

2 Spatial averaged autocorrelation method [12]
Real and imaginary autocorrelation coefficient (3 frequency bands and 3 spatial com-
ponents): 18 features

3 Complex 3c-covariance matrix [13–15]
Several degree of polarization measures, ellipticity, angle of incidence (3 frequency
bands): 39 features

4 Complex seismic trace analysis [16]
Instantaneous attributes (polarization, frequency, polarization directions, 3 frequency
bands and 3 spatial components): 42 features

5 Spectral attributes
Normalized horizontal and vertical spectra (10 frequency bands), dominant frequency,
bandwidth: 25 features

6 Spectra of polarization ellipsoid [17]
Normalized semi-mayor and semi-minor axis of polarization ellipsoid (10 frequency
bands): 20 features

7 Amplitude ratios
Real over imaginary part of complex trace, horizontal over vertical component (3
frequency bands): 6 features

In general, for many applications the number of all potential features can
be very high. However, the information content or relevance of individual fea-
tures e.g. for clustering or imaging of patterns in the data may vary considerably.
Furthermore, strong correlations between features will occult important informa-
tion which is encoded in less or non redundant components of the feature vector.
Thus, the computation time may be unnecessarily increased and the quality of
the final results may suffer. Moreover, the higher the dimension of the data, the
more data is needed for learning, and the less suitable is the euclidian distance
as a measure of similarity, due to the curse of dimensionality [5, 6]. Furthermore,
interpretation of the results is much easier for low number of features.

While a lot of approaches exist for supervised learning due to availability
of labeled training data, for unsupervised learning feature selection is a more
recent topic of research. Several approaches have been proposed to reduce the
number of features, e.g. Principal Component Analysis (PCA). However, for
PCA it is difficult to characterize the reduced data space since the (physical)
meaning of the new features generated by linear combinations is unclear. Wrap-
per algorithms use a forward or backward selection procedure to search for the



Unsupervised Feature Selection for Seismic Wavefields 3

feature subset most relevant for clustering according to a particular evaluation
criteria [7]. The computational complexity is very high for that approach, es-
pecially for high-dimensional data sets, since clustering has to be repeated for
all potential subsets. In [8] a fuzzy feature evaluation index for feature sets is
used which does not require clustering. Feature selection is done by finding the
feature subset with the smallest index. For a second method this evaluation in-
dex is minimized using a Neural Network approach in order to find the relative
importance of individual features. For the first method still a search algorithm
is necessary. A technique requiring no search is suggested by [9]. This method
reduces feature redundancy by grouping features based on a pairwise feature
similarity measure called maximum information compression. Both approaches,
[9] and [8], are combined by [10] suggesting a two-level filter technique. Feature
selection is done by first reducing redundancy and then assessing relevance for
clustering of each feature using a fuzzy feature evaluation criteria.

Since an exhaustive wrapper search based on repeated clustering is not op-
timal for our real-world problem with up to 163 features, a filter approach for
unsupervised feature selection is more promising. Furthermore, we also want to
keep features that might show no clear cluster tendency but significant pattern
in their time history, what is typical e.g. for earthquakes. Therefore, using a
similar idea as [10] in this study, we introduce a multi-level feature selection
procedure. We use significance testing using the Wald-Wolfowitz runs test [18]
as a temporal context dependend feature relevance measure and Self-Organizing
Maps (SOM) [19] for redundancy reduction.

Self-Organizing Maps (SOMs) [19] is a popular and widespread unsupervised
learning method. Especially for large data sets of high dimensions, SOMs allow
an intuitive visualization of the data by vector quantization and dimension re-
duction. Based on the relatively simple SOM representation further processing
e.g. clustering or feature grouping can be done and easily be validated.

In Section 2 we give a more detailed introduction into the individual methods
used. Section 3 presents our feature selection procedure in detail. We assess the
reliability of our approach using clustering of synthetic data and apply it to
real-world data in Section 4.

2 Methods

In this section we introduce different techniques which are used for our feature
selection procedure. We explain the significance test developed by Wald and
Wolfowitz [18] and the Davies-Bouldin cluster validity index [20]. Furthermore,
we introduce the Self-Organizing Maps learning algorithm [19].

2.1 Wald-Wolfowitz Runs Test

The Wald-Wolfowitz runs test can be used to assess the randomness of a two-
valued time series by considering the distribution of runs. A “run” of a series
is a maximal segment of adjacent equal elements (see background coloring in
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Fig. 1. Demonstration of runs test for 5 time histories. Horizontal lines correspond
to median. Background colorings highlight values above and below median. Whenever
coloring changes with time, a new “run” is starting.

Fig. 1). In general, any time series can be transformed into a two-valued one
by considering e.g. whether a data item is smaller or larger than the median of
the series (see dotted lines in Fig. 1). In order to find the features that show
significant, non-random temporal patterns, we evaluate the test statistic of the
runs test:

Ztest =
r − E[R]
√

Var[R]
, (1)

where R is a random variable corresponding to the number of runs of a random
time series which has the same length N as the series of a particular feature under
investigation. The variable r is the number of observed runs for that feature. The
mean:

E[R] =
2N−N+

N
+ 1 , (2)

and the variance

Var[R] =
2N−N+(2N−N+ − N)

N2(N − 1)
, (3)

of R is computed given the number of data items larger and smaller than the
median (N+ and N−) considering the observed time series. Whenever the hy-
pothesis of randomness is not rejected (Ztest < 1.96 for a significance level of
5%), the corresponding feature shows no significant pattern and therefore has
no information content.
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Fig. 2. Example for Self-Organizing Maps applied to a simple 3D-data set.

2.2 Cluster Validity

In order to validate that a particular clustering fits the natural grouping of the
data, several quality criteria have been proposed. In the following we use the
Davies-Bouldin (DB) index [20]:

DB =
1

C

C
∑

k=1

max
l 6=k

{Dk + Dl

dkl

}

, (4)

where d is the distance between cluster centroids, D the average distance to the
cluster centroid within a cluster and C the number of clusters.

2.3 Self-Organizing Maps

The SOM learning algorithm combines vector quantization (generation of pro-
totype vectors, black symbols in Fig. 2a) and an ordered, topology preserving
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mapping into a space of lower dimension (Fig. 2b). Usually, SOMs are built on
a regular, hexagonal grid. Each grid unit n is represented by a prototype vector
mn. For each data sample xt (gray symbols in Fig. 2a and 2b) the closest proto-
type vector mc can be found, where c is called the best matching unit (BMU).
At each learning step t, the prototype vectors in the neighborhood of unit c are
moved towards the selected vector xt:

mn = mn + α(t)hcn(t)(xt − mn) , (5)

where hcn(t) defines the Gaussian neighborhood around unit c and α(t) is the
learning rate, both decreasing with time. For more details see the SOM-Toolbox
implemented in MATLAB R© by [21].

The SOM can be used to visualize high-dimensional data and therefore to
identify and manually define clusters e.g. by showing the prototype distance
between neighborhood SOM units (U-Matrix in Fig. 2c, black stands for high
distances). Furthermore, since each SOM prototype vector itself can already
be regarded as a cluster centroid, standard clustering algorithms can directly be
applied on the set of all prototype vectors. In order to find the number of clusters,
often the clustering algorithm is applied for different numbers of clusters. The
best clustering is chosen according to the lowest Davies-Bouldin index [20, 22].

In order to reduce redundancy in the data space (correlation hunting), SOMs
can be used by considering the so-called component planes (CPs, overlaying
panels in Fig. 2d, black stands for high values). A CP is built on the trained
SOM (N units) where each unit n is represented by a particular component
i of the corresponding prototype vector mn. The components of the absolute
correlation matrix A between all CPs is defined as:

aij =
1

N

N
∑

n=1

‖mni · mnj‖. (6)

As proposed by [23] the correlation matrix can be used as input data for the
training of a second SOM on a rectangular grid. The data vector xt is then
defined as:

xt
def
= a · j, (7)

where a·j is a column of A. The so-called component plane SOM (CP-SOM) can
be used to visualize intuitively correlation or similarity between components on
a 2D-map (base map of Fig. 2d).

Correlated features can be grouped e.g. by clustering the CP-SOM using
hierarchical clustering based on the distance matrix of the CP-SOM prototypes
[24, 25] (coloring of base map in Fig. 2d).

3 An Unsupervised Feature Selection Procedure

In the previous section we introduced different technique which we will now
combine for an unsupervised feature selection procedure. I order to keep signif-
icant features and reduce redundant information for a feature set generated by



Unsupervised Feature Selection for Seismic Wavefields 7

Fig. 3. Three-level feature selection procedure. Stages 1-4 correspond to different fea-
ture subsets after or before particular processing steps. Feature subsets at stage 2 and
3 correspond to different feature generation methods.

different approaches, we propose a three-level feature selection approach which
iteratively reduces the number of features. The processing flow is illustrated in
Fig. 3. In the first level we chose potential feature candidates by assessing the in-
formation content of each feature individually, while in the second and third level
dependencies between features are considered. In the next sections we discuss
each level in more detail.

Level 1: Within Individual Features

In this level we first compute three criteria for each feature:

– Ratio Rexp/Robs between reasonably expected range Rexp of a feature f de-
rived theoretically from physical or data processing parameters and observed
variability Robs = max(f) − min(f).

– Wald-Wolfowitz test statistic Ztest (equation 1).
– Lowest DB index (equation 4) computed from 1D-K-Means clusterings al-

lowing 2 to Nclus clusters (e.g. Nclus=5) .

The first two criteria are used to exclude features. We reject those features pro-
viding no significant discrimination between time windows due to small observed
ranges (Rexp/Robs < rlimit, e.g. rlimit = 0.1) and which show no significant tem-
poral pattern (Ztest < Zlimit). We found empirically that for amplitude features
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from generation methods 5, 6 and 7 rlimit = 0 (accepting all features) is opti-
mal. As mentioned in Section 2.2, Zlimit = 1.96 is an appropriate threshold for
the runs test. However, if the duration of expected temporal pattern is longer,
increasing this value may improve the performance.

The DB index is used to assess the cluster tendency of the feature. This
criteria is used together with Ztest in the next level to rank features.

Level 2: In-between Features of Individual Subsets

In the second level, we consider 7 feature subsets corresponding to the different
feature generation methods (Table 1). Only features accepted by Level 1 are
used. We first learn a SOM and afterwards a CP-SOM for each subset and then
apply the CP-SOM clustering. From each CP-SOM cluster the features with the
lowest DB index and the highest test statistic Ztest are chosen as representative
features for the particular cluster. Thus, we keep features with both, best cluster
tendency and most significant temporal patterns. In case both features have the
same BMU on the CP-SOM, only the latter one is selected.

Level 3: In-between all Remaining Features

From Level 2 we get a reduced subset for each feature generation method. In the
third level, we learn a single SOM and CP-SOM combining all subsets together
in order to assess correlations between methods. Finally, we chose the features
like in Level 2. The final set of features can then be used for further processing
i.e. to learn the final SOM and to cluster the data set.

Simple Example

In Table 2 we demonstrate our feature selection procedure using a simple data
set of 5 features (N = 300). Values for features X, Y and Z, together defining
three clusters, can be found in Fig. 2a. Features Y and Z are strongly correlated.
The data for the remaining features V and W are drawn from a Normal and
from a Uniform distribution, respectively. The temporal context of all features
is given in Fig. 1. We omit the range test in Level 1 and only use a single subset
(no Level 3) because the feature have no physical background.

Features V and W are correctly rejected by the runs test (Ztest < 1.96)
because of their temporal randomness. The result of CP-SOM clustering is shown
in Fig. 2d. Features Y and Z belong to the same CP-cluster. Thus, features X
and Y , the second one due to the higher runs test statistic Ztest and DB index,
are finally selected.

We also test a wrapper approach for feature selection using the same feature
set. The forward search based on a normalized cluster scatter separability crite-
rion as proposed by [7] results in a best feature subset including X, Y and Z,
thus, correctly rejecting the random features. However, no redundancy reduction
is obtained and maximum number of clusters has to be set to 3.
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Table 2. Results of Feature selection applied on a simple data example.

Feature X Y Z V W

Observed runs r 70 77 78 149 154
Runs-Test Statistic Ztest 9.37 8.56 8.44 0.23 0.35
DB Index 0.35 0.46 0.47 0.63 0.56
Selected after level 1 yes yes yes no no

Index of CP-SOM cluster 1 2 2 - -
Selected after level 2 yes yes no - -

4 Experiments

We conduct experiments using both, synthetic seismic data and real earthquake
recordings. Synthetic data is used to validate the feature selection procedure,
while real-world data is employed to show the potentials of the method for
seismic wave phase detection.

4.1 Synthetic Data

In order to assess the validity and performance of the feature selection procedure,
we apply a 10-fold cross-validation technique on a synthetic data set [7]. The
validation is based on hierarchical clusterings of synthetic seismic waveforms
computed for different receivers. The data set consists of 4 classes corresponding
to 3 different types of seismic waves (Rayleigh waves, Love waves, mixture of
both: class 1-3) and random noise in between (class 4). The class labels are only
used for the error computation.

Level 1 of the feature selection procedure (Nclus = 5, rlimit = 0.1, Zlimit =
1.96) is applied on the complete data set (training and test data) in order to
keep the temporal context for the runs test. After feature selection and clustering
using the training data, each cluster is classified with respect to the most frequent
class label within. For the testing we compute the BMUs, and thus the cluster-
memberships, of the test data set on the training data set SOM. A class error is
computed as the percentage of misclassified data compared to the total number
of samples of the test data set for each fold. Finally, the (mean) cross-validated
classification error (CVCE, [7]) is calculated.

In order to quantify the improvements made by our new feature selection
approach, we compute the CVCE for several feature subsets obtained at four
stages of the procedure (see Fig. 3) and for particular feature generation meth-
ods (Table 1). It should be noted, that we do not expect to achieve a CVCE
tending to zero, since the transition between seismic wave types and noise can
be continuous, although we introduced a threshold for the class labeling.

Considering the overall trend for each feature generation method in Table 3,
the classification errors slightly decrease with number of features and therefore
with stage of feature selection. Furthermore, comparing the methods, the CVCE
decreases significantly when all feature generation methods are combined at
each stage compared to the individual feature subsets. Focussing on individual
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methods, method 5 (spectral features) seems to provide the best discriminative
power for clustering. For method 7 (amplitude ratios) and method 6 (spectra
of polarization ellipsoid) the CVCE increases at stage 3. The best performance
(15.8%) is achieved with about 57 features from all methods at stage 3. However,
after assessing correlation between all feature generation methods at stage 4, the
CVCE is still within the range of standard deviations of stages 1 to 3 for the
combination of methods. Due to the relatively simple synthetic wavefield, most
features show significant pattern and are therefore accepted in feature selection
level 1. However, assessing the correlations between features in level 2 and 3,
significantly reduced the set of features for all feature generation methods. The
reduction in level 2 and 3 does not worsen the classification rate, except for
feature generation methods 6 and 7, where probably the number of features
becomes too low.

From the cross-validation we conclude that it is sufficient to consider only the
finally reduced feature subset combining features from different methods (stage
4). The dimensionality, and therefore computation time and model complexity,
is reduced considerably for further analysis of the data set, without significantly
losing discriminative power.

Table 3. Results of cross-validation for a synthetic seismic wavefield. Cross-validated
Classification Error (CVCE) and Averaged number of features for different stages of
feature selection and different feature generation methods (see Fig. 3 and Table 1).

Method 1 2 3 4 5 6 7 all

Percent CVCE

Stage 1 29.7 45.8 30.1 25.2 22.5 35.0 31.4 17.1
±9.4 ±10.3 ±11.9 ±12.0 ±7.7 ±8.3 ±11.4 ±4.3

Stage 2 29.7 45.8 30.1 23.2 20.0 34.0 31.4 16.2
±9.4 ±10.3 ±11.9 ±11.0 ±7.5 ±5.6 ±11.4 ±4.9

Stage 3 27.6 36.9 25.8 22.4 21.5 41.5 39.2 15.8
±7.0 ±6.2 ±10.2 ±8.3 ±7.3 ±7.0 ±6.4 ±5.9

Stage 4 - - - - - - - 16.9
- - - - - - - ±5.6

Averaged Number of Features

Stage 1 9 18 39 42 25 20 6 159
Stage 2 9 18 39 37 24 15 6 148
Stage 3 5.0±0.0 6.7±1.5 12.5±1.8 14.5±2.3 10.5±1.6 6.5±1.2 2.9±0.5 57.9±3.9
Stage 4 - - - - - - - 22.2±2.3

4.2 Real-world Data

In this section we apply our procedure to earthquake recordings in order to find
suitable features which allow to detect the temporal onset of an event, and also to
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Fig. 4. Time histories of all three spatial components for an earthquake record. Back-
ground coloring corresponds to theoretical phase labels.

distinguish between different phases of the arriving waves. We use three similar
events which were recorded at the same receiver and occurred at different times in
the same source region. In Fig. 4 for one event the three-component seismogram
is shown. The labels and the background coloring indicate different wave phases
which can be identified using theoretical arrival times and expert knowledge of
seismologists. Except of generation method 1 and 2, which require more than
one receiver, all features are computed and the feature selection procedure is
applied (Nclus = 5, rlimit = 0.2, Zlimit = 4.0).

Finally, a SOM is trained using these features each weighted with its Ztest

value. For a quantitative evaluation of our method, we compute classification
errors (false positive and false negative) and a measure for discrimination power
using the 6 theoretical class labels (Pn, Pg, Sn and Sg phases, coda of event,
noise). For this purpose, the most frequent class label, resulting from the project-
ing of the labeled data on the SOM, is assigned to each SOM unit. Ambiguous
units (same number of BMU hits for two or more classes) are counted. First,
classification errors CVk are computed for individual classes k. In case a class is
not present on the SOM after labeling, CVk is set to 1. Finally, the mean over
all classes (CV ) is penalized by the ratio Ramb between number of ambiguous
and all SOM units:

CVfinal = CV + (1 − CV ) ∗ Ramb . (8)

The discrimination power S is computed using the normed scatter separa-
bility criteria [7] for the SOM prototype vector clusters given by the 6 class
labels.

Considering S, CV +

final (false positive) and CV −
final (false negative), Table

4 shows that the wave phases are clearly better discriminated with the feature
vector of significant lower dimension compared to the complete feature set. In this
context, we also tested the influence of parameters Nclus, rlimit, Zlimit, choice
of clustering index and length of time window for feature generation. Results for
classification errors show that we used the optimal values. For detailed results
and discussion on the sensitivity of parameters see the JMLR version of this
paper.
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Table 4. Results of Feature selection applied on real-world data.

no Feature selection Feature selection

CV
+

final 0.16 0.06

CV
−

final 0.19 0.10

S 40.8 212.1
Number of features 129 9

5 Conclusions and Outlook

In this paper, we introduced an unsupervised feature selection procedure for
seismic wavefield recordings. The features are computed from different seis-
mic feature generation methods. The technique is based on a combination of
significance testing for individual features and correlation analysis using Self-
Organizing Maps for feature subsets. We applied the procedure on a synthetic
seismic wavefield. Cross-validating SOM-based clusterings obtained from auto-
matically selected feature subsets showed that the best performance, considering
classification error and model complexity, can be achieved with the finally se-
lected features.

Furthermore, for the experiment on real-world data, we found 9 features
suitable for earthquake detection and wave type discrimination for 3 recorded
events. By comparing classification errors for the corresponding SOM, we found
that this feature set provided better discrimination between seismic wave types
than using all potential features. We plan to investigate the generalization ca-
pability of our procedure for larger earthquake data sets using cross-validation.

We suggest our approach as a first learning step for advanced supervised
learning techniques which rely on large, multi-dimensional time series data sets.
Features selected from seismic recordings including different types of earth-
quakes, mining events (explosions) and other transient phenomena can be used
to train e.g. context dependent learning methods like Dynamic Bayesian Net-
works [4] which are able to classify the event type and to detect seismic phases.
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