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Abstract. Dimensionality reduction and feature subset selection are
two techniques for reducing the attribute space of a feature set, which
is an important component of both supervised and unsupervised classifi-
cation or regression problems. While in feature subset selection a subset
of the original attributes is extracted, dimensionality reduction produces
linear combinations of the original attribute set.
In this paper we investigate the relationship between attribute reduction
techniques and the resulting classification accuracy for two very different
application ares: On the one hand, we consider e-mail filtering, where var-
ious properties of e-mail messages are extracted, and on the other hand,
we consider drug discovery problems, where quantitative representations
of molecular structures are encoded in terms of information-preserving
descriptor values.
In the present work, subsets of the original attributes constructed by
filter and wrapper techniques as well as subsets of linear combinations
of the original attributes constructed by three different variants of the
principle component analysis (PCA) are compared in terms of the classi-
fication performance achieved with various machine learning algorithms.
We successively reduce the size of the attribute sets and investigate the
changes in the classification results. Moreover, we explore the relation-
ship between the variance captured in the linear combinations within
PCA and the classification accuracy.
First results show that the classification accuracy based on PCA are
highly sensitive to the type of data and that the variance captured the
principal components is not necessarily a vital indicator for the classifi-
cation performance.

1 Introduction and Related Work

As the dimensionality of the data increases, many types of data analysis and
classification become significantly harder, and sometimes the data becomes in-
creasingly sparse in the space it occupies. This can lead to big problems for
both supervised and unsupervised learning. In the literature, this phenomenon
is referred to as the curse of dimensionality [20]. On the one hand, in the case
of supervised learning or classification there might be too few data objects to
allow the creation of a reliable model that assigns a class to all possible objects.
On the other hand, for unsupervised learning methods or clustering algorithms
various vitally important definitions (e.g., density or distance between points)
may become less convincing. As a result, a high number of features can lead
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to lower classification accuracy and clusters of poor quality. High dimensional
data is also a serious problem for many classification algorithms due to its huge
requirements for computational cost and memory usage. Moreover, when dealing
with a huge number of instances and attributes storage requirements may also
become a problem. Besides this key factor, Tan et al. [22] also mention that a
reduction of the attribute space leads to a better understandable model and sim-
plifies the usage of different visualization techniques. Some extensive surveys of
various feature selection and dimensionality reduction approaches can be found
in the literature, for example, in Molina et al. [16] or Guyon et al [10].

Principle component analysis (PCA) is a well known data preprocessing tech-
nique to capture linear dependencies among attributes of a data set. It com-
presses the attribute space by identifying the strongest patterns in the data, i.e.,
the attribute space is reduced with loosing only the smallest possible amount of
information about the original data.

Howley et al. [11] have investigated the effect of PCA on machine learning
accuracy with high dimensional spectral data based on different pre-processing
steps. They use the NIPALS [8] method to iteratively compute only the first n
PCs of a data sample until the required number of PCs have been generated.
Their results show that using this PCA method in combination with classifi-
cation improves the classification accuracy when dealing with high dimensional
data. Popelinsky [19] has analyzed the effect of PCA on three different machine
learning methods. In one test-run, the PC scores (i.e., linear combinations of
the original attributes) were added to the original attributes, in the second test-
run, the PC scores replaced them. The results show that adding the PC scores
increased the classification results for all machine learning algorithms, whereas
replacing the original attributes only increased the accuracy for one algorithm.

Attributes resulting from various PCA variants may differ significantly in
their coverage of the variability of the original attributes. To the best of our
knowledge no systematic studies have been carried out to explore the relation-
ship between the variability captured in the linear combinations of PCA and the
accuracy of machine learning algorithms. One of the objectives of this paper is to
summarize initial investigations of this issue. More generally, we investigate the
variation of the classification accuracy depending on the choice of the feature set
(that includes the choice of specific variants of for calculating the PCA) for two
quite different data sets. Another important aspect motivating such investiga-
tions are questions relating to how classification accuracy based on PCA subsets
compares to classification accuracy based on subsets of the original features of
the same size, or how to identify the smallest subset of original features which
yields a classification accuracy comparable to the one of a given PCA subset.

2 Feature Subset Selection and Dimensionality Reduction

The main idea of feature subset selection (FS) is to remove redundant or irrele-
vant features from the data set as they can lead to a reduction of the classification
accuracy or clustering quality and to an unnecessary increase of computational
cost [2], [14]. The advantage of FS is that no information about the importance



A Comparison of Classification Accuracy 3

of single features is lost. On the other hand, if a small set of features is required
and the original features are diverse, information might be lost as some of the
features must be omitted. With dimensionality reduction (DR) the size of the
attribute space can often be strikingly decreased without loosing a lot of infor-
mation of the original attribute space. The not neglectable disadvantage of DR
is the fact that the linear combinations are not interpretable and the information
about how much an attribute contributes to the linear combinations is often lost.

2.1 Feature (Subset) Selection

Generally speaking, there are three types of feature subset selection approaches,
filters, wrappers, as well as embedded approaches which perform the feature
selection process as an integral part of the machine learning (ML) algorithm.

Wrappers are feedback methods that incorporate the ML algorithm in the FS
process, i.e., they rely on the performance of a specific classifier (which is used
as a black box) to evaluate the quality of a set of features [13].

Filters are classifier agnostic pre-selection methods that are independent of
the later applied machine learning algorithm. Beside some statistical filtering
methods like Fisher score or Pearson correlation, information gain, originally
used to compute splitting criteria for decision trees, is often applied to find out
how well each single feature separates the given data set. The overall entropy I
of a given dataset S is given as:

I(S) = −
C∑

i=1

pi log2 pi, (1)

where C denotes the total number of classes and pi the portion of instances
that belong to class i. The reduction in entropy or the gain in information is
computed for each attribute A according to

IG(S, A) = I(S)−
∑
vεA

|SA,v|
|S|

I(SA,v), (2)

where v is a value of A and SA,v is the set of instances where A has value v.

2.2 Dimensionality Reduction

DR refers to algorithms and techniques that create new attributes which are
combinations of the old attributes to reduce the dimensionality of data sets [15].
The most important DR technique is principal component analysis (PCA). PCA
produces new attributes which are linear combinations of the original variables,
whereas the goal of a factor analysis [9] is to express the original attributes as
linear combinations of a small number of hidden or latent attributes.

PCA. The goal of PCA [12], [17] is to find a set of new attributes (these new at-
tributes are called principal components, PCs) that meets the following criteria:
The PCs are (i) linear combinations of the original attributes, (ii) orthogonal
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to each other, and (iii) capture the maximum amount of variation in the data.
Often the variability of the data can be captured by a relatively small number
of PCs, and, as a result, PCA can result in relatively low-dimensional data with
usually lower noise than the original patterns. PCA depends on the scaling of the
data, and therefore the results are sometimes non-conclusively, and, in addition
to that, the principal components are not always easy to interpret.

Mathematical Background. The covariance of two attributes is a measure
how strongly the attributes vary together. The covariance of two random vari-
ables x and y of a sample with size n and mean x, y can be calculated as

Cov(x, y) =
1

n− 1

n∑
i=1

(xi − x)(y − y) (3)

When x and y are normalized by their standard deviations σx and σy, then
the covariance of x and y is equal to the correlation coefficient of x and y, which
indicates the strength and direction of a linear relationship between x and y.

Corr(x, y) =
Cov(x, y)

σxσy
(4)

Given an m by n matrix D, whose m rows are data objects and whose n columns
are attributes, we can calculate the covariance matrix Cov(D) which is con-
structed of the single covariances. If we shift the values of each attribute of D
such that the mean of each attribute is 0, then Cov(D) = DT D.

Tan et al. [22] summarizes four main properties of the principle component
analysis: (i) Each pair of attributes has 0 covariance, (ii) the attributes are
ordered descendingly with respect of their variance, (iii) the first attribute cap-
tures as much of the variance of the data as possible, and, (iv) each successive
attribute captures as much of the remaining data as possible.

One way to obtain a transformation of the data that has these properties is
based on the eigenvalue analysis of the covariance matrix. Let λ1, ..., λn be the
non-negative descending ordered eigenvalues and U = [u1, ...,un] the matrix of
eigenvectors of Cov(D) (the ith eigenvector corresponds to the the ith largest
eigenvalue). The matrix X = DU is the transformed data that satisfies the
conditions mentioned above, where each attribute is a linear combination of the
original attributes, the variance of the ith new attribute is λi, and the sum of the
variance of all new attributes is equal to the sum of the variance of the original
attributes. The eigenvectors of Cov(D) define a new set of orthogonal axes that
can be viewed as a rotation of the original axes. The total variability of the data
is still preserved, but the new attributes are now uncorrelated.

3 Experimental Evaluation

For the experimental evaluation we used MATLAB to compute three different
variants of PCA (cf. Section 3.2), and the WEKA toolkit [23] to measure the
classification performance of the learning methods on each feature set.
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3.1 Data Sets

The data sets used for the experiments come from two completely different ap-
plication areas and differ strongly in the number of instances and features as
well as in the character of the features.

E-mail data. The first data set consists of 10 000 e-mail messages (half spam,
half not spam) taken from the TREC 2005 e-mail corpus [6]. The values of the
features for each message were extracted using the state-of-the-art spam filtering
system SpamAssassin [1] (SA), where different parts of each e-mail message are
checked by various tests, each test is assigned a certain value (positive for spam
messages, negative for non-spam messages). Although the number of the features
within SA is rather large, only a relatively small number of these features provide
useful information. For the data set used only 230 out of 800 tests triggered at
least once. Hence, our e-mail data set is a 10 000× 230 matrix.

Drug discovery data. The second data set has a medicinal chemistry back-
ground. The goal is to identify potential safety risks in an early phase of the drug
discovery process, in order to avoid costly and elaborate late stage failures in
clinical studies. This data set consists of 249 structurally diverse compounds,
110 of them are known to be substrates of P-glycoprotein, a macromolecule that
is notorious for its potential to decrease the efficacy of drugs (“antitarget”). The
remaining 139 compounds are non-substrates. The chemical structures of these
candidates are encoded in terms of 366 information preserving descriptor values
(features). Hence, our drug discovery data set is a 249× 366 matrix.

Diversity. While the e-mail data set is very sparse (97.5% of all entries are
zero) the drug discovery data set contains only about 18% zero entries. Moreover,
most of the e-mail features have the property, that they are either zero or have
a fixed value (i.e., when a test triggers the same number is assigned for each
message). This is completely different from the drug discovery data set where
the attribute values and their variances are very diverse.

3.2 Feature Sets

In our experiments we compare two FS methods and three different DR methods
based on PCA (cf. Section 2.1).

– Wrapper approach: For extracting the wrapper subsets we randomly select
attribute subsets and use cross validation to estimate the accuracy of the
learning scheme for these subsets. A paired t-test then computes the proba-
bility if other subsets may perform substantially better. The result is a fixed
set of features, between 4 and 18 features for our evaluations.

– Filter approach: As a second FS method we ranked the attributes with re-
spect to their information gain. This ranking is independent of a specific
learning algorithm and contains – before selecting a subset – all attributes.

In the literature, several variants of PCA appear. Here, we investigate the
differences of three variants in terms of resulting classification accuracy. For all
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subsets based on PCA we first performed a mean shift of all features such that the
mean becomes 0. We denote the resulting feature-instance matrix as M . Based
on this first preprocessing step we define three variants of the PCA computation.
The PCA subsets contain min(features, instances) linear combinations of the
original attributes (before selecting a subset).

– PCA1: The eigenvalues and eigenvectors are computed using the covariance
matrix of M (cf. Section 2.2). The new attribute values are then computed
by multiplying M with the eigenvectors of Cov(M).

– PCA2: The eigenvalues and eigenvectors are computed using the correlation
matrix of M (cf. Section 2.2). The new attribute values are then computed
by multiplying M with the eigenvectors of Corr(M).

– PCA3: Each feature of M is normalized by its standard deviation (i.e., z-
scored). This normalized values are used for the computation of eigenvalues
and eigenvectors (i.e., there is no difference between the covariance and the
correlation coefficient) and also for the computation of the new attributes.

3.3 Machine Learning Methods

For evaluating the classification performance of the reduced feature sets we use
six different machine learning methods. The methods are not explained in detail,
but a reference is given for each of the models.

– A support vector machine (SVM) based on the sequential minimal optimiza-
tion (SMO) [18] algorithm using a polynomial kernel (exponent of 1).

– A k -nearest neighbors (kNN) classifier using different values of k (1 to 9) [7].
– A bagging ensemble learner using a pruned decision tree as base learner [3].
– A single J.48 decision tree based on Quinlans C4.5 decision tree algorithm [21].
– A random forest classifier using a forest of random trees [4].
– A Java implementation (JRip) of a propositional rule learner, called RIPPER

(Repeated incremental pruning to produce error reduction [5]).

4 Results

For all feature sets except the wrapper subsets we measured the classification
performance for subsets containing the n “best ranked” features (n varies be-
tween 100 and 1). For the information gain method, these best ranked features
are the top n information gain ranked original features, for the PCA subsets the
best ranked features are the top n linear combinations of the original attributes
capturing most of the variability of the original attributes, i.e., the linear com-
binations having the n biggest eigenvalues.

The classification results were measured using a 10-fold cross-validation, i.e.
partitioning the data into 10 parts and iteratively using nine parts of the data
objects for training and the remaining one for testing. The achieved results are
shown separately for the two feature sets. As the kNN results with k = 1 achieved
the best results amongst all values of k, only the kNN(1) results are shown.
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4.1 E-mail Data

Table 1 shows the average classification accuracy for the IG subsets and the PCA
subsets over all top n features (from 100 to 1). The best and the worst average
results for each feature set are highlighted in bold and italic letters, respectively.
The best overall result over all feature sets is marked with an asterisk.

Table 1. E-mail data – average overall classification accuracy (in %).

SVM kNN(1) Bagging J.48 RandF JRip AVG.

Infogain 99.20 99.18 99.16 99.16 99.21 99.18 99.18

PCA1 99.26 99.70 99.68 99.70 * 99.77 99.67 99.63

PCA2 99.55 99.69 99.67 99.69 99.75 99.68 99.67

PCA3 99.54 99.64 99.65 99.64 99.65 99.64 99.63

Table 2. E-mail data – best overall classification accuracy (in %).

SVM kNN(1) Bagging J.48 RandF JRip

All features 99.75
230 attr.

99.70
230 attr.

99.71
230 attr.

99.65
230 attr.

99.73
230 attr.

99.66
230 attr.

Wrapper
fixed set

99.61
7 attr.

99.60
5 attr.

99.61
4 attr.

99.61
7 attr.

99.67
11 attr.

99.64
7 attr.

Infogain 99.76
100 attr.

99.71
50 attr.

99.70
50 attr.

99.71
100 attr.

99.78
80 attr.

99.72
90 attr.

PCA1 99.65
90 PCs

99.74
40 PCs

99.69
40 PCs

99.75
30 PCs

* 99.82
70 PCs

99.73
5 PCs

PCA2 99.67
90 PCs

99.75
40 PCs

99.72
30 PCs

99.78
60 PCs

99.80
15 PCs

99.76
40 PCs

PCA3 99.65
100 PCs

99.73
5 PCs

99.71
20 PCs

99.71
4 PCs

99.79
15 PCs

99.73
50 PCs

Table 2 shows the best classification results for all feature subsets (including
the wrapper subsets) and for a classification using the complete feature set.
Table 2 also contains the information how many original features (for FS) and
how many linear combinations (for PCA) were needed to achieve these results.

Algorithms. Although the overall classification accuracy is very good in gen-
eral, when comparing the different machine learning methods is can be seen
that random forest achieves the best results for all of the reduced feature sets
used, and that SVM (surprisingly!) often archives the lowest results. Especially
for the average PCA results over all subsets (Table 1) SVM shows the lowest
classification accuracy. When the complete feature set is used, the SVM results
are slightly better than the random forest results (Table 2).

Feature Subset Selection. A comparison of the two FS methods shows that
the best results achieved with IG subsets are better than the wrapper results (see
Table 2). Nevertheless, when looking at the size of the subsets that could achieve
the best results it can be seen that the wrapper subsets are very small. Figure 1
shows the degradation in the classification accuracy when the number of features
in the IG subsets is reduced. Interestingly, all machine learning methods show
the same curve without any significant differences. The results are very stable
until the subsets are reduced to 30 or less features, then the overall classification
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accuracy tends to decrease proportional to the reduction of features. Comparing
the wrapper results with the IG results using the same subset size (Figure 1 (6
to 8 features), and Table 2), it can be seen that wrapper clearly outperforms IG.

Fig. 1. E-mail data – information gain subsets

Fig. 2. E-mail data – PCA1 subsets

PCA. Figure 2 shows the overall classification accuracy for PCA1 (cf. Sec-
tion 3.2). The classification performance is very stable regardless of the number
of linear combinations used. Only the SVM method clearly decreases with a
smaller number of PCs. The classification accuracy for the other two PCA vari-
ants PCA2 and PCA3 is very similar (see Tables 1 and 2).

Table 3. E-mail data – amount of variance captured by first n PCs (max. dim: 230)

PCs 100 80 60 40 20 10 8 6 5 4 3 2 1

Cov. 99.4% 98.9% 97.8% 95.3% 87.0% 75.7% 71.7% 66.0% 62.7% 58.9% 54.0% 48.0% 38.0%

Corr. 67.7% 58.9% 49.4% 38.3% 24.7% 15.8% 13.7% 11.5% 10.3% 9.0% 7.7% 6.3% 3.9%

Explaining the variance. Even though the classification results for all three
PCA variants are similar, it is very interesting to notice that when the correlation
matrix is used to compute the eigenvectors and eigenvalues (as it is the case for
PCA2 and PCA3) – instead of the covariance matrix – the amount of variance
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that can be captured by the first n PCs (i.e., the cumulated percentage of the
first n eigenvalues) decreases remarkably.

4.2 Drug Discovery Data

Tables 4 and 5 show the same information than Tables 1 and 2, the average and
the best classification results, this time for the drug discover data set.

Table 4. Drug discovery data – average overall classification accuracy (in %).

SVM kNN(1) Bagging J.48 RandF JRip AVG.

Infogain 69.25 67.55 70.63 68.47 68.04 70.32 69.04

PCA1 63.50 65.87 65.84 61.81 65.03 65.74 64.63

PCA2 61.05 66.39 69.27 65.27 67.16 65.92 65.84

PCA3 68.78 67.28 * 71.02 63.76 69.66 67.06 67.93

Table 5. Drug discovery data – best overall classification accuracy (in %).

SVM kNN(1) Bagging J.48 RandF JRip

All features 70.67
367 attr.

73.89
367 attr.

74.30
367 attr.

64.24
367 attr.

73.52
367 attr.

69.09
367 attr.

Wrapper
fixed set

77.48
18 attr.

79.91
6 attr.

79.51
10 attr.

79.53
6 attr.

* 79.93
6 attr.

79.89
6 attr.

Infogain 72.70
60 attr.

73.08
80 attr.

74.31
20 attr.

71.11
1 attr.

71.89
7 attr.

73.52
2 attr.

PCA1 70.69
60 PCs

73.07
15 PCs

68.68
15 PCs

65.87
15 PCs

69.48
4 PCs

69.09
6 PCs

PCA2 65.89
60 PCs

71.89
60 PCs

73.08
15 PCs

68.29
60 PCs

73.89
40 PCs

68.69
4 PCs

PCA3 73.89
6 PCs

73.09
10 PCs

75.90
6 PCs

69.09
5 PCs

76.69
10 PCs

71.48
7 PCs

Algorithms. Compared to the e-mail data set, the overall classification accu-
racy decreases strikingly for all machine learning methods used. Comparing the
six different algorithms, it can be seen that bagging out-competes the other algo-
rithms on the average results (Table 4). The best results over all feature subsets
(Table 5) are either achieved with kNN, bagging or random forests.

Feature Subset Selection. A very interesting observation is that the (again
very small) wrapper subsets clearly outperform the IG subsets, in contrast to the
results for the e-mail data also for IG subsets with 30-100 features. The classifi-
cation results using all features are similar to the best IG results, and therefore
also much lower than the wrapper results. The three best wrapper results (kNN,
random forest and JRip) were all achieved with a feature set containing only 6
features. Interestingly, only two features appear in all three subsets, the other
features are diverse. Figure 3 shows the classification performance for the IG
subsets with different sizes. There is a sharp distinction between this curve and
the curve shown in Figure 1 (IG subsets for the e-mail data). Although there is
a small decline in the results when the number of attributes is decreased, even
with very small IG gain subsets the classification performance remains accept-
able (compared to big IG subsets).
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Fig. 3. Drug discovery data – information gain subsets

Fig. 4. Drug discovery data – PCA (A) subsets

PCA. Figure 4 shows the overall classification accuracy for PCA1. The results
are again very different to the results from the e-mail data set. Surprisingly, the
results using between the first 90 to 100 PCs, as well as the results using only one
PC are much lower than the results for other PC numbers. For subsets between
3 and 80 PCs, the average classification result combining all machine learning
methods are always between 64.1% and 67.3%. When comparing PCA1 (using
the covariance matrix) and PCA2 (using the correlation matrix), it can be seen
that the results for some classifiers change significantly. The best result for SVM
(see Table 5) decreases by 5% even though both subsets achieved the best result
with the same number of PCs (60). On the other hand, for bagging and random
forest the results increased by about 4%. The best bagging results were again
achieved with the same number of PCs (15). The best PCA subsets for this data
set is PCA3, the standardized data set (see Tables 4 and 5).

Explaining the variance. The amount of variance captured by the first n
PCs is much higher than for the e-mail data set (cf. Table 6). This is due to
the smaller number of features (249 compared to 10 000) and the fact that the
e-mail data set is very sparse (which is not the case for the DD data set).
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Table 6. DD data – amount of variance captured by first n PCs (max. dim: 249).

PCs 100 80 60 40 20 10 8 6 5 4 3 2 1

Cov 100% 99.9% 99.9% 99.9% 99.9% 99.8% 99.6% 99.3% 98.7% 98.1% 97.0% 94.6% 87.9%

Corr 99.6% 99.1% 97.9% 95.2% 88.7% 79.9% 76.5% 71.5% 68.2% 63.6% 58.1% 51.4% 40.6%

5 Conclusion

We investigated the relationship between various feature subset selection (FS)
and dimensionality reduction (DR) methods and the resulting classification per-
formance based on data sets from two distinct application contexts, e-mail clas-
sification and drug discovery (DD). We compared the classification results for
subsets containing some of the original attributes (extracted with a wrapper
method and information gain (IG)) with subsets containing linear combinations
of the original attributes, computed with three variants of the principle com-
ponent analysis (PCA). Moreover, we investigated the relationship between the
variability captured in the linear combinations of PCA and the classification
performance of machine learning (ML) algorithms. The observations made lead
to the following conclusions.

1. Comparison of the FS methods reveals that wrapper methods clearly outper-
form IG on the DD data, and also show very good performance on the e-mail
data set. Although for the e-mail data the best overall IG subset achieves
better results than the wrapper subsets, the wrapper subsets lead on average
to better results than the IG subsets with comparable sizes.

2. Looking at the ML algorithms, SVMs show surprisingly low classification
results on PCA subsets. Although SVMs perform very well when all features
or subsets of the original features are used, SVMs achieve only the lowest
results for all three PCA subsets of the e-mail data. On the DD data, only
the PCA3 results are better than the average results over all six classifiers.

3. A comparison of the PCA subsets with IG and wrapper shows that PCA
combined with machine learning is highly sensitive to the characteristics of
the data. For the sparse e-mail data set with much more instances than
attributes the PCA results are better and much more stable with respect to
the size of the feature set (see Figures 1 and 2). For the DD data set, which
contains more attributes than instances and only few null entries, the PCA
results are much lower than the results achieved with wrappers or IG.

4. The amount of variability captured in the first n PCs does not have much
influence on the classification performance. Looking at Table 3 it can be seen
that the first n PCs capture much more of the variability of the original data
when the covariance is used for the PCA (PCA1) than when the correla-
tion is used (PCA2). Nevertheless, the classification performances of both
variants are very similar (cf. Table 1). Moreover, normalizing the e-mail fea-
tures by their standard deviation (PCA3) does not change the classification
performance. This normalization step seems to slightly increase the classifi-
cation performance on the DD data whereas there covariance and correlation
results do not vary much.
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Overall, very significant variations in the classification accuracy and in the
influence of different feature subsets on this accuracy can be observed, obviously
also depending on the type of data. It is clear that more investigation is needed
in the complex connections between feature selection and classification accuracy.
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