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Abstract. Earlier, we formulated a Bayesian approach to Feature Sub-
set Selection using Bayesian networks, which jointly estimate the poste-
riors of Markov Blanket Memberships (MBMs), Markov Blanket Sets
(MBSs), and Markov Blanket Subgraphs (MBGs) for a given target
variable. These results of the Bayesian Multilevel Analysis of relevance
(BMLA) correspond respectively to a model-based pairwise relevance,
relevance of sets, and to the interaction models of relevant variables. In
this paper we discuss applications of the Bayesian approach to new chal-
lenges in relevance analysis. First, we formulate refined levels in BMLA
by introducing the concepts of k-MBSs and k-MBGs, which are interme-
diate, scalable model properties expressing relevance. Second, we con-
sider the extension of BMLA to multiple targets. Third, we introduce
and investigate a score for feature redundancy and interaction based on
the decomposability of the structure posterior. Finally, we overview the
problems of conditional and contextual relevance. We demonstrate the
concepts and methods in the field of the genomics of asthma.

1 Introduction

Earlier, we formulated generalizations of the feature subset selection problem in
the Bayesian framework, based on structural properties of Bayesian networks [5].
We presented a methodology of Bayesian, Multilevel Analysis (BMLA) of the
relevance of input variables, which is capable of analyzing relevance at different
abstraction levels (i.e., at the levels of Markov Blanket Memberships, Markov
Blanket sets, and Markov Blanket graphs). BMLA can express the sufficiency of
the data, and the uncertainty at the proposed multilevel representations.

However, there are many open issues in BMLA such as (1) more refined
levels, (2) multiple target variables, (3) redundancy and interaction of features,
(4) contextual relevance, and (5) predictive value of features. In this paper we
discuss these extensions and experimentally investigate the first three issues.
The paper is organized as follows. In Section 2 we overview the Bayesian ap-
proach to the feature subset selection problem (FSS), including the concept of
Markov Blanket subgraph as a central Bayesian network property for the FSS.
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In Section 3 we formulate the concepts of k-MBS and k-MBG with scalable,
polynomial cardinality between pairwise relevance and complete subsets of rel-
evant features, and between edges and subgraphs. In Section 4, we illustrate
the concept of informative input feature aggregation. In Section 5, we discuss
the concept of redundancy and interaction based on the decomposability of the
structure posterior. In Section 6 we discuss the application of BMLA for mul-
tiple targets. In Section 7 we overview the concept of contextual relevance and
its relation to relevance, conditional relevance, and interactions. In Section 9 we
demonstrate the general concepts in a discrete, real-world application domain of
the genomics of asthma using single nucleotide polymorphisms (SNPs), which
are binary and tertiary genomic variables [18]. SNPs and genes are anonymized,
because the biomedical publications of these results are still in progress.

2 Background

In the predictive approach to feature relevance, the concept of relevance can be
defined specific to the applied model class used as a predictor, the optimization
algorithm, the data set, and the loss function, whose generalization leads to the
wrapper approach [12]. In the filter approach, typically non-predictive methods
approximate the following model-based definition of relevance [15].

Definition 1 (Markov boundary). A set of variables X′ is called a Markov
blanket set of Xi w.r.t. the distribution p(X1, . . . ,Xn), if (Xi ⊥⊥ V \ X′|X′)p,
where ⊥⊥ denotes conditional independence. A minimal Markov blanket is called
Markov boundary [15]. Its indicator function is MBSp(Xi,X

′).

Bayesian networks (BNs) and their properties offer a wide range of options
for representing relevance, the discussion of which started with J.Pearl’s seminal
work [15]. The following theorem gives a sufficient condition for the unambiguous
BN representation of the relevant features.

Theorem 1. For a distribution p defined by Bayesian network (G, θ) the vari-
ables bd(Y,G) form a Markov blanket of Y , where bd(Xi, G) denotes the set
of parents, children and the children’s other parents for Xi [15]. If the distri-
bution p is stable w.r.t. the DAG G [16], then bd(Y,G) forms a unique and
minimal Markov blanket of Y , MBSp(Y ) and Xi ∈ MBSp(Y ) iff Xi is strongly
relevant [19].

We also refer to bd(Y,G) as the Markov blanket for Y in G using the notation
MBS(Y,G) by the implicit assumption that p is Markov compatible with G4. The
induced (symmetric) pairwise relation MBM(Y,Xj , G) w.r.t. G between Y and
Xj is called Markov blanket membership.

4 Note that in typical Bayesian scenarios (e.g., in case of Dirichlet distributions applied
in the paper to specify p(θ|G)), the graph-theoretic neighborhood bd(Y, G) is also
the unique Markov Boundary with probability 1, because the possible parametrically
encoded independencies have measure 0 [14].
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MBM(Y,Xj , G) ⇔ Xj ∈ bd(Y,G) (1)

To extend the FSS problem we proposed the use of Markov Blanket subGraph
(MBG) feature (property), a.k.a. classification subgraph [5, 1] (see Fig. 3).

Definition 2 (Markov Blanket subGraph). A subgraph of Bayesian net-
work structure G is called the Markov Blanket subGraph or Mechanism Bound-
ary subGraph MBG(Y,G) of variable Y if it includes the nodes in the Markov
blanket defined by bd(Y,G) and the incoming edges into Y and into its children.

For a probabilistic and causal interpretation, a representation of observation
equivalent MBGs, bounds for its cardinality, and its use in prediction see [1, 5].
An important property of the MBG feature is that it is sufficient for relevance
analysis in case of complete data (which is the direct consequence of Thm. 1).
Unfortunately, there is no closed-form for the posterior p(mbg|DN ) in general,
but it is easy to derive a closed-form for the ordering-conditional posterior, which
can be exploited in ordering-MCMC methods [5].

Earlier works on using Bayesian network properties in relevance analysis
include the Markov Blanket Approximating Algorithm [13], its recent exten-
sions [21], the IAMB algorithm and its variants [19, 20, 2, 17].

In the Bayesian approach, we are interested in the posteriors for various
model properties expressing relevance for a given target variable Y . E.g. assum-
ing BNs as a model class the MBS posterior is defined as follows

p(MBS(Y,X ′)|DN ) =
∑

G

1(MBS(Y,G) = X ′)p(G|DN ).

where the indicator function 1(MBS(Y,G) = X ′) is true, if the set of variables
X ′ is the MBS of the target variable Y , given a specific DAG structure G; and
DN denotes the data set. The goal of the Bayesian multilevel analysis of relevance
is the joint analysis of posteriors corresponding to features Xi, sets of features,
joint models of interactions of relevant features. Following our assumption in
this paper about the underlying BN representation, it means the estimation of
posteriors for the Markov Blanket Memberships (MBM(Y,Xi)), Markov Blanket
sets (MBS(Y,X′)), and Markov Blanket graphs (MBG(Y,MBG)).

3 Multivariate scalability: k-MBS and k-MBG features

The multiple levels in BMLA offer a wide range of analysis at multiple abstrac-
tion levels (i.e., with varying complexity). However, the MBG and MBS features
are much more expressive than the edge and MBM features, e.g. their cardinali-
ties are superexponential, exponential, and linear for a given target respectively.
Consequently, the MBG and MBS posteriors are often too “flat” (i.e. there are
hundreds of MBS or MBG features with moderately high posteriors), even when
the MBM posteriors are peaked (for further details see [5]). Typically, —even
in the “flat” posterior case— the most probable MBS and MBG feature values
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often show a significant common part. As a response to this we define concepts
focused on target variables with scalable complexity between MBMs and MBSs,
and between edges and MBGs as follows.

Definition 3 (k-MBS). For a distribution p(V ) (|V | = n), if all the vari-
ables Xi in s ⊆ V are members of a Markov Boundary set mbs and |s| = k,
then s is called a k-ary Markov Boundary subset 5 (k-MBSp(s, Y ) ⇔ (∃mbs :
MBSp(mbs, Y ), s ⊆ mbs). Its indicator is denoted by k-MBSp(s, Y ).

Proposition 1. For a stable distribution p defined by Bayesian network (G, θ)
s is k-ary Markov Boundary subset k-MBSp(s, Y ), iff s ⊆ bd(Y,G) and |s| = k

(otherwise bd(Y,G) may not be minimal).5

The concept of k-MBS-s covers the gap between the MBS and MBM features
(MBM ≡“1-MBS”).

Definition 4 (k-MBG). A subgraph g of Bayesian network structure G is
called the k-ary Markov Blanket subGraph k-MBG(g, Y,G) of variable Y if it
includes k edges of the MBG(Y,G)6.

The k-MBS and k-MBG offer scalable features for the analysis of relevance,
as their cardinalities are polynomial (O(nk) and O(n2k)). In practice this means,
that we can analyze the most probable k-MBS(Y ) and k-MBG(Y ) feature val-
ues for all reasonable k values. The posteriors for k-MBS and k-MBG can be
derived off-line from the estimates for the MBG and MBS posteriors. The maxi-
mum value of k, at which model properties (feature values) with high probability
are present is problem dependent. Reasonable limits can be found either by a
bottom-up or a top-down approach starting from k = 1 or k = |V | respec-
tively (note that for intermediate values of k the number of feature values is
computationally not tractable, e.g.

(

n
k

)

for k-MBS).

4 A Knowledge-rich Aggregation of Input Features

An attractive property of the Bayesian approach to relevance is that the model
posterior can be transformed and interpreted without theoretical restrictions.
In our case, using the space of Bayesian network structures, it means that the
posterior p(G|DN ) can be aggregated by any partitioning over model structures
G, where each partitioning offers a potentially different interpretation. However,
only few partitions have a noninformative or informative meaning.

5 Because p is stable with probability 1 in case of Dirichlet distributions applied in
the paper to specify p(θ|G) [14], we also use the indicator function k-MBS(s, Y, G)
assuming that p is compatible with G. However in regard to the possible not stable
cases with potential non-minimality of s, we call these sets in general k-ary Markov
Blanket subsets.

6 The posterior for the presence of a given edge e in the complete domain model G is
different from the posterior for the presence of e in MBG(Y, G), because the presence
of an edge in MBG(Y, G) may depend on the presence of other edges.



A Bayesian View of Challenges in Feature Selection 5

Besides noninformative model aggregation, the prior domain knowledge can
be used as well to define interesting partitions. As with the noninformative ag-
gregation, such an aggregation can (1) provide a more general description of
relevance relations in the domain, and (2) yield more confident numerical re-
sults. A straightforward way to augment the SNP space is to introduce the level
of genes. Many SNPs are related to a given gene, therefore genes can be regarded
as aggregations of SNPs. On the level of genes, we have calculated the aggregated
versions of the Markov blanket membership and Markov blanket set relations.
The corresponding equations are derived from their counterparts belonging to
the more specific SNP level, e.g. (where Y, g, s respectively denote the target,
gene, and SNP variables)

p(MBM(Y, g|D)) =
∑

G

p(G|D)max
s

1(onGene(g, s)) × 1(MBM(Y, s,G)). (2)

5 Interaction, redundancy based on posterior decomposition

Typically, we focus on high-scoring subfeatures, although low probabilities may
also indicate important relations, because composite measures representing high-
level semantic properties can be constructed, e.g. for redundancy and for inter-
actions. The discovery of interacting features and the redundancy of features
have great significance. To construct such a score supporting their discovery,
note that the k-MBS posterior can be approximated by the corresponding MBM
posteriors as follows.

p(k-MBS(X′, Y,G)|Dn) ≈
∏

X∈X′

p(MBM(Y,X,G)|Dn) (3)

That is the product of the Markov Blanket Membership probabilities of each
member variable Xi of k-MBS, as if their occurrence were independent. The
exact k-MBS posterior can be calculated by summing up the probabilities of the
MBSs containing the examined set X′. This enables a direct Bayesian approach
to the concept of redundancy and interaction based on the decomposability
of the structure posterior. If the higher-order k-MBS posterior is larger than
the approximation based on lower-order k-MBS posteriors, it may indicate that
the subset has interacting features. In the opposite case, it may indicate the
redundancy of features. This is formalized in the following definition, which can
be generalized to multiple variables and orders higher than 1.

Definition 5 (Interaction and redundancy). The features X′ = {Xi1 , . . . ,Xik
}

are 1,k-product independent/redundant/interacting if p(k-MBS(X′, Y,G)|DN ) is
equal/less/larger than

∏

j p(MBM(Xij
, Y,G)|DN ).

The task of finding redundant subfeatures can be regarded as the comple-
ment of finding stable subfeatures, e.g. in the first case we are looking for those
elements which often supplement the stable parts of features.
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6 Relevance for Multiple Targets

If there are multiple possible target variables Y which have to be examined to-
gether and the relations among them are irrelevant one may ask for the variables
that are relevant to the target set. Note, that this is similar to the aggregation
of input features in Section 4, but in this case the target variables are “aggre-
gated”. Fortunately, the basic concepts of relevance discussed earlier, such as the
probabilistic concept of Markov blankets in Definition 1, the concept of relevance
in Definition 6, and the graph-theoretic concept of neighbourhood in Theorem 1
can easily be extended to use target sets instead of a single target node.

Definition 6 (Multiple target Relevance). A feature (stochastic variable)
Xi is strongly/weakly relevant to Y , if it is strongly strongly/weakly relevant to
any Yi ∈ Y

It is easy to see that the union of the MBSs of the targets, except the elements
of the target set itself, is a Markov Blanket set for the target set.

Proposition 2. If MBS(Y) = (
⋃

Yi∈Y
MBSp(Yi))\Y, then MBS(Y) is a Markov

blanket for Y w.r.t. distribution p.

An equivalent proposition can be stated for Markov boundaries, although the
effects of logical dependencies should be filtered appropriately. Note, that the
posterior for a given target set Y cannot be calculated from the posteriors of a
partition of Y =

⋃

i Y i, because of the interdependencies. However posteriors
corresponding to subsets of the target set can be used for an approximation. In
case of MBMs, e.g.

p(MBM(Xj ,Y , g)|DN ) ≈ 1 −
∏

i

(1 − p(MBM(Xj ,Y i, g)|DN )) (4)

Furthermore in case of MBMs, if the posteriors are available for all of the
subsets Y ′ ⊆ Y , then for any Y ′′ ⊆ Y , using inductively p(A ∩ B) = p(A) +
p(B)− p(A∪B), we can compute the posterior probability that Xj is a Markov
blanket member for each Yi ∈ Y .

In case of multiple targets, the posteriors of canonic features (MBM, MBS,
and MBG) of target sets can be estimated with standard DAG-based Monte
Carlo methods. However, the ordering-based Monte Carlo methods need seri-
ous modifications, as they contain special search methods within the estimation
to find high-scoring MBS and MBG features [5]. Exceptionally, for the MBM
feature, the ordering conditional MBM posterior p(MBM(Y , G)| ≺,DN ), where
≺ denotes ordering, can still be computed in polynomial time by the proper
adaptation of the single target formula [8].

7 Conditional and contextual relevance

The fundamental definitions of relevance in Def. 1 and 6 are based on the general
concept of conditional independence. However, as conditional independence can
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be made more specific by introducing contextual independence, we can introduce
the concept of contextual relevance to support more refined analysis. Recall that
contextual independence is a specialized form of conditional independence, i.e
when conditional independence is valid only for a certain value c of another
disjoint set C (for its use in the context of Bayesian networks, see e.g. [6]). Let
us denote the contextual independence of X and Y given Z and context c with
(X ⊥⊥ Y |Z, c), that is

(X ⊥⊥ Y |Z, c) iff (∀x,y,z p(y|z, c,x) = p(y|z, c) whenever p(z, c,x) > 0).
(5)

An analogous extensions for relevance are as follows.

Definition 7 (Contextual Irrelevance). Assume that X = X′ ∪ C′′ is rel-
evant for Y , that is (Y 6⊥⊥ (X′ ∪ C′′), and (X′ ∩ C′′) = ∅). We say that X′ is
contextually irrelevant if there exists some c′′ for which (Y ⊥⊥ X′|c′′).

For completeness, recall the definition of conditional relevance

Definition 8 (Conditional Relevance). Assume that X = X′ ∪ C′ is rele-
vant for Y , that is (Y 6⊥⊥ (X′ ∪ C′)), and (X′ ∩ C′ = ∅). We say that X′ is
conditionally relevant if (X′ ⊥⊥ Y ), but (X′ 6⊥⊥ Y |C′) as assumed.

This definition applies for both weak and strong relevance. Note that condi-
tional relevance and contextual irrelevance are independent, although typically
somewhat opposite concepts.In case of conditional relevance, we have to know a
value of a relevant feature C ′ to ensure the relevance of an otherwise irrelevant
feature X ′. Whereas in case of contextual irrelevance there should be a value c′′

whose knowledge makes an otherwise relevant feature irrelevant.
The BMLA method based on standard BNs is able to perform a model-

based Bayesian inference about conditional relevance (see Section 10). However,
to handle contextual relevances, a Bayesian network representing contextual de-
pendencies is necessary, e.g. using decision trees as local dependency models [6].

8 Posteriors for the predictive power of input features

Since the wrapper approach in practice is based on predictive power and the
filter approach is based on some model-based relevance, their relation is an open
issue and their joint usage needs caution, just as using filter approaches to sup-
port predictive model construction (e.g., see [7] for the bias of the model-based
approach on BN classifiers). As a special case, consider the asymmetricity of
the approaches: a variable can be identified as relevant by having a high MBM
posterior, yet its predictive power can be negligible.

The Bayesian analysis of relevance based on Bayesian networks in general
corresponds to the model-based approaches, but it is specialized as much as pos-
sible towards the predictive approach by collapsing the structure posterior into a
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simpler space of complex structural features representing exactly the predictive
aspects (e.g. the MBG feature is a sufficient and necessary feature for prediction
under broad conditions [5, 3]). Although the relation of the model-based and
predictive approaches is outside the scope of the paper, we shortly summarize a
parallel Bayesian view for quantitative, prediction oriented model properties.

Using Bayesian networks as conditional predictors allows the definition of
quantitative model properties (features) for a given input-output relation ex-
pressing the predictive power of the input features on a given data set. Such
features (assuming a binary target variable) are the following: the Misclassifi-
cation Rate MR(G,θ|Y,X,D′

N ), the Odds Ratio OR(G,θ|Y,X,D′

N ), and the
Area Under the (ROC) Curve AUC(G,θ|Y,X,D′

N ) [4]. These random variables
are defined by the Bayesian network (G,θ) for a given input-output relation
(X, Y ) and on a given external data set D′

N (the posterior p(G,θ|DN ) is typ-
ically defined by a different training data set). Note, that by having a fully
specified Bayesian network (G,θ) (i.e. the input distribution as well) we can
define and use these random variables exclusively based on data DN .

9 Results

We demonstrate the newly proposed general concepts in the discrete domain us-
ing a realistic reference model (G0, θ0) containing three clinical variables (Asthma,
Allergy, Rhinitis) and forty-six SNPs selected from the asthma susceptibility re-
gion of chromosome 11q13 [18]. The structure and parameterization of the refer-
ence model was learned from a real data set containing 1117 samples, which was
slightly modified to test special cases of relevance. We generated 10,000 complete
random samples from this reference model.

To estimate the posteriors we applied both a DAG-based and an ordering-
based Markov Chain Monte Carlo(MCMC) method [11, 8, 5]. Because of their
correspondence, space constraints, and the more direct applicability of the DAG-
MCMC in the proposed extensions, we report results only from this method. The
length of the burn-in and MCMC simulation was 106 and 5 ·106, the probability
of the operators from [11] is uniform. The Cooper-Herskovits (CH) prior was
used as parameter prior and the structure prior was uniform prior. The maximum
number of parents was 4. The lengths of the burn-in was selected using Geweke’s
z-score test and the R value of the multiple-chain method [9, 10]. The length of
the MCMC simulation was selected to decrease the variances of the MCMC
estimates below 10−2.

First, we report results about the effects of syntactic and semantic aggre-
gations. Fig. 1 reports the maximal posteriors for k-MBS compatible with the
maximum a posteriori (MAP) MBS for increasing k = 1, . . . , 7 (the MAP MBS
contains seven variables). It also shows the posterior of the MAP MBS. Fig. 2 re-
ports the probability of relevance of SNPs at the aggregation level of genes.Fig. 3
indicates the decomposability of the MBS posteriors according to Section 5.
Finally, Fig. 4 reports the sequential posteriors that a given SNP is relevant
for asthma, allergy and rhinitis, both separately and jointly. It also shows the
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Fig. 1. The maximal posteriors for k-MBS-s compatible with the MAP MBS for in-
creasing k = 1, . . . , 7 (the MAP MBS contains seven variables). The last columns shows
the posterior of the MAP MBS given a sample size of 1000.
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Fig. 2. The sequential posteriors that a given gene contains a SNP relevant for asthma.
The probability of relevance is induced by the posterior p(MBM(SNPi, Asthma|D).

approximation of the MBM posterior for the joint target set based on the MBM
posteriors for individual targets according to Eq. 4.

10 Discussion

The reference model G0 for the three target variables contains several interac-
tions and features of conditional relevance, see Fig. 3. The MBS(Asthma,G0) and
MBG(Asthma,G0) can be correctly identified by the MAP MBS and MBG above
104 samples. Consequently, this asymptotic observation holds for the newly in-
troduced k-MBS and k-MBG features, gene level aggregation, and for multiple
target variables as well. To illustrate the effect of input aggregation and mul-
tiple outputs we used 103 samples, which is moderate sample size w.r.t. this
set of variables, and typical in practice. This sample size was also used for the
investigation of the decomposability of the posterior to infer interaction and
redundancy.

As for the proposed k-MBS and k-MBG features with intermediate com-
plexity, Fig. 1 indicates that 103 samples are enough to ensure a high posterior
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Fig. 4. The posteriors that a given SNP is relevant for asthma, allergy and rhinitis,
both separately and jointly. It also shows the approximation of the MBM posterior for
the joint target set based on the MBM posteriors for individual targets.

(0.9 <), though only for k-MBS k < 5. It is also noteworthy, that the posterior
of the MAP MBS (0.0760) is significantly lower than the corresponding 7-MBS
defined by its members (0.4374). Despite the restriction in the use of maximal
posteriors and only k-MBS-s compatible with the MAP MBS, this result clearly
justifies that the proposed k-MBS feature can fulfill its intended role to fill the
gap between MBM and MBS features (the posterior for the MBM is 0.9989).
Fig. 2 shows a similar but semantic aggregation using a sequential approach,
which illustrates the easy transformation and fusion of Bayesian results to sup-
port interpretation.

Fig. 3 in general indicates mostly independence, but we report the five-five
pairs with maximal difference between their estimated posteriors and MBM
based product approximations according to Eq. 3. The reported independencies
are compatible with the MBG(Asthma,Allergy,Rhinitis,G0) in the reference
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model G0, e.g. SNP7 is the parent of Allergy, whereas the other variables are
related to Asthma. The pair SNP3,SNP4 with “highest” difference indicating in-
teraction really does form an interaction in the reference model (SNP3 is a child
of Asthma and SNP4 is another parent of SNP3 ). The pair SNP9,SNP31 with
“highest” difference indicating redundancy are potentially redundant, multiple
parents of Asthma.

Finally Fig. 4 demonstrates the joint use of multiple target variables, al-
though in this case one of the target variables (Asthma) nearly determines the
posterior MBM for the whole set. Furthermore, the relevant variables for the tar-
get variables in the reference model are mostly different, thus the approximation
in Eq. 4 gives close values.

11 Conclusion

The exact modeling of interactions by the MBG features using Bayesian networks
and the Bayesian approach to the feature subset “selection” problem offered a
principled solution for quantifying the uncertainty in inferring relevant features
and their joint interactions. In this paper, motivated by the Bayesian approach
and the shortcomings of the Bayesian multilevel analysis of relevance, we intro-
duced and investigated the following concepts and methods.

1. k-MBS, k-MBG the use of new prediction-oriented Bayesian network prop-
erties (features) with intermediate, scalable complexity.

2. Multiple target variables, which is a distinct problem, e.g. in the Bayesian
approach in general the posterior for the target set cannot be reconstructed
from the posteriors for the partitions of the target set.

3. Interaction and redundancy discovery, based on the decomposability of the
structure posterior.

Furthermore, we overviewed open issues in FSS from the aspect of the Bayesian
approach and Bayesian networks, such as contextual relevance, and the relation
of relevance and predictive measures. Note, that these extensions, e.g. the con-
cepts of k-MBS or k-MBG and multivariate relevance can be useful in frequentist
methods as well.
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