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Abstract. Whereas the variable selection has been extensively studied
in the context of supervised learning, the unsupervised variable selec-
tion has attracted attention of researchers more recently as the available
amount of unlabeled data has exploded. Many unsupervised variable
ranking criteria were proposed and their relevance is usually demon-
strated using either external cluster validity indexes or the accuracy of a
classifier which are both supervised criterion. Actually, the major issue
of the variable subset selection according to a ranking measure has been
adressed only by few authors in the unsupervised learning context. In
this paper, we propose to combine multiple ranking to go ahead toward
a stable consensus variable subset in a totally unsupervised fashion.

1 Introduction

The amount of available data has exploded as the storage technologies were
improved. The companies databases gathered a lot of information which are
not all relevant for their exploitation by computational methods. It has been
proved that dimension reduction of the data generally leads to performance
improvement: this process can be applied either to the sample size, to their
description or even to both dimension. In this paper, we are interested in the
reduction of the description space dimension. Two kind of approaches can be
considered to reduce the dimension of the sample points description, namely,
feature extraction and feature selection. The latter consists in combining the
original dimension to construct new features while the last reduces the dimension
of the input space by dropping some irrelevant or weakly relevant features.

The most widely used feature extraction techniques is probably the Princi-
pal Component Analysis (PCA) [1] which builds new uncorrelated dimensions,
called factors, by maximising the variance. Another linear technique is the Mul-
tidimensional Scaling (MDS) [1] which starts with a dissimilarity matrix and
builds a representation in an Euclidian space by maximising the preservation of
the distances between sample points. Some non linear methods have also been
proposed such as the Isometric Mapping (Isomap) [2] or the Locally Linear Em-
bedded (LLE) [3]. The efficiency of these methods have been demonstrated on a
large range of application domain, but the interpretation of the new features is
not obvious and an important effort is required from the user. This paper deals
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with feature selection which has the advantage of keeping the sample points
in a subspace of the original space. Hence, the reduced description is directly
understandable and does not require any additional interpretation work.

Although feature selection has been extensively studied in the context of
supervised learning, this field is relatively new in the unsupervised learning.
Several evaluation measures have been proposed but the authors rarely present
a full selection procedure; actually, the definition of a stopping criterion is not
often considered. In this paper, a general methodology is proposed for variables
ranking based feature selection. The approach proposed eliminates the irrelevant
features but does not remove the redundant features whereas they are only
weakly relevant.

The rest of the paper is organised as follows. Section 2 gives a brief overview
of related works. Section 3 presents the approach proposed. Section 4 reports
our experimental results. Finally, section 5 concludes.

2 Related work

Feature selection consists in choosing one feature subset among all the possible
one and a feature selection procedure is composed from essentially in three ele-
ments: an evaluation measure, a subset generator and a stopping criterion [4–6].
Three categories of methods are generally distinguished: the filter, the wrapper
and the embedded approaches [7]. The filter approaches only take into account
the properties of the data-set independently of the future use of the data. On
the contrary, in the wrapper approaches, the performance of the algorithm which
uses the data are considered either to define the evaluation measure, to guide
the search procedure or to define a stopping criterion. In the last kind of tech-
niques, the procedure is embedded in the algorithm used to build the model.
A deeper introduction to the feature and variable selection can be found in [4],
[5] or [6]. The feature selection problem has been extensively studied in the
context of supervised learning but relatively few works have been published in
the unsupervised context. A brief overview of the domain is given by classifying
the approaches according the following taxonomy: redundancy based, entropy
based, auto-associative model based and clustering based. The reader interested
in unsupervised feature selection for text data should refer to [8] and [9].

Redundancy based approaches

A broad part of the methods which proposed to achieve feature selection in the
unsupervised context try to eliminate the redundancy among a feature subset
and thus they rely either on correlation or an estimation mutual information
[10–12]. Actually, P. Mitra et al. used a similarity measure that corresponds to
the lowest eigenvalue of correlation matrix between two features [11], J. Vesanto
et al. proposed to visually detect correlation using a SOM-based approach [12]
and S. Guérif and al. used a similar idea and integrated a weighting mechanism
in the SOM training algorithm to reduce the redundancy side effects [10].
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Auto-associative model based approaches

Some authors reduce the unsupervised case issue to the supervised one by using
auto-associative models: supervised selection approaches can be applied with
regression techniques and furnish us with an unsupervised method. For instance,
the auto-associative regression trees (ART) have been used in [13].

Entropy based approaches

Assuming that the relevant features are those which lead to clusters in a data-
set, an entropy like criteria can be used as evaluation measure: a uniformly
distributed feature does not provide any useful information for clustering and on
the contrary, feature that gathers the sample points in small group are relevant.
Actually, assuming that s(x, y) is the similarity between two sample points x

and y, an entropy measure can be defined as [14, 15]:

H =
∑

(x,y)∈X2

(s(x, y) log s(x, y)) + (1 − s(x, y)) log(1 − s(x, y)) (1)

where X is the data-set. This measure is used in combination with a sequential
backward elimination procedure in [14] or with a sequential forward selection
procedure in [15]. It has also been exploited by the neuro-fuzzy approach pro-
posed in [16].

Clustering based approaches

Clustering quality assessment can be used either as a subset evaluation mea-
sure [17] or as a stopping criterion [15, 18, 19]. Actually, a Davies-Bouldin index
based evaluation measure was proposed in [17] and assuming that the features
are normally distributed, the authors used the Λ Wilks statistic to stop their
backward elimination procedure since the separability of the clusters decreases
significantly. In [15, 18, 19], the scatter matrices and separability criteria used
in multiple discriminant analysis were used by the authors to stop their fea-
ture selection process. Model-based clustering usually estimates the probability
distribution of the data; this gives an additional insight of the data. In other
respects, the maximum likelihood criterion measures how likely a model fits the
data. Hence, select a feature subset amounts to select a model [18–21]. The au-
thors of [18, 19] pointed out that both the scatter separability and the maximum
likelihood criteria are biased with the respect of the number of features and they
provided a normalisation term to correct this bias. The subspace clustering can
be viewed as a related issue and [22] provides an overview of this topic.

3 Proposed approach

The approach proposed relies on two reasonable assumptions. On the one hand,
since a scoring function is consistent with the addressed problem, the irrelevant
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features are ranked at the end. On the other hand, we assume the existence of a
partition such that the features are gathered in equivalence classes in respect with
an evaluation measure; actually, the ordering defined on each of the equivalence
classes by the scoring function considered is nothing more than an artefact.
Hence, we are interested in detecting only the equivalence class which gathers
the irrelevant features. This can be achieved by identifying the rank from which
the variables are randomly ranked. According to the definition of the equivalence
classes, while a set of features gathers variables from more than one class, it can
be (at least partially) ordered. Now, rank the features according their decreasing
relevance, as soon as the set of the last features can not be properly ordered,
it gathers only features from the same equivalence class: the irrelevant features
one.

We propose to compute multiple ranking of a variable set using resampling
technique and to identify a subset of the best features with respect to the different
rankings; a user defined parameter controls the minimal agreement. Actually,
we assume that the irrelevant features equivalence class can not be properly
ordered. Thus, when the irrelevant feature equivalence class begins at rank k,
there is no reason for one irrelevant feature to be preferably ranked at any of the
last ranks. This leads to assume that the distribution of the features at each of
the remainingthe kth rank is uniform. Our null hypothesis H0 can be formulated
as follows: ”at the kth rank the variables are uniformly distributed”. Thus, a
χ2 test can be used to test the agreement between the empirical distribution of
the variables at the kth rank and the theoretical distribution under a uniform
random distribution.

3.1 Notations

Let F = {1, . . . , n} be a set of variables and S = {si : i = 1, . . . , p} be a set
of p scoring functions si : F → IR. The scoring function si on F defines a
total order on F and the corresponding permutation is noted by σi while the
set of the permutations induced by S is R = {σi : i = 1, . . . , p}. Let σi|1:k and
R|1:k = {σi|1:k} be respectively the k first values of the permutation σi and the
set of the restricted permutations. Let ĉj |k denotes the number of permutations
σi ∈ R such that the variable j appears at the kth rank and let cj |k be its
expectation when only the (k − 1) first values of each permutation are known.

3.2 Theoretical distribution

Assuming that only the (k − 1) first values of each permutation are known, and
that the (n−k+1) last values are obtained independently at random, cj |k follows
a Bernoulli distribution and can be easily computed as:

cj |k =

pkj
∑

l=1

(

pkj

l

)

× l × (qk)l × (1 − qk)pkj−l (2)
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where pk and qk are defined as:

pkj = p −

p
∑

i=1

k−1
∑

l=1

ĉj |l (3)

qk =
1

n − k + 1
(4)

and refer to the number of permutations for which j does not appear before the
kth rank and the probability such j appears at the kth rank (if has not appeared
before) respectively.

3.3 χ
2-test

The deviation of the empirical values from the theoretical distribution is mea-
sured using the χ2 statistic defined as:

χ2
n−1 =

n
∑

j=1

(ĉj |k − cj |k)2

cj |k
(5)

Under the null hypothesis H0, the following expression follows a Laplace-Gauss
distribution LG(0, 1) :

[

(

χ2
n−1

n − 1

)

1

3

+
2

9(n − 1)
− 1

]
√

9(n − 1)

2
(6)

since (n−1) > 100. Thus, the χ2 test amounts to test whether the expression (6)
exceeds the critical value of the unilateral test for a Laplace-Gauss distribution.
Assuming that a false negative rate of 5% (probability of a Type II error) is
acceptable, the threshold θ = 1.65 would be used for the expression (6).

3.4 Subset selection

Let k̃ be the last rank for which the expression (6) is lower than the threshold
θ. The subset selected by the method proposed is defined as follows:

F̃α =







j ∈ F : α.p ≤

k̃
∑

k=1

cj |k







(7)

where the α ∈ [0, 1] parameter controls the required degree of agreement between
the different rankings.

3.5 Algorithm and complexity

The following high level algorithm summarised the different steps of the method
proposed:



6 Guérif

1. Compute the set of scoring functions S using p independent sub-samples of
the data-set: θ(p.m)

2. Build the set of rankings R induced by S: θ(p.n. log2 n)
3. For each variable j and each rank k, compute ĉj |k the number of permuta-

tions such that j appears at the kth rank: θ(p.n)
4. Compute the binomial coefficients: θ(p2)
5. Compute cj |k the expected values of ĉj |k under the null hypothesis: θ(p.n2)
6. Compute the χ2 statistics: θ(n2)

The time complexity of each step is indicated above and the overall time com-
plexity of the method proposed is θ

(

p(n2 + m) + p2
)

where m, n and p are
respectively the complexity of the scoring function evaluation, the number of
variables and the number of scoring function evaluations.

4 Experimental results

4.1 Data-sets

Here, we demonstrate the effectiveness of the stop criterion presented above on
four data-sets, namely, Arcene, Gisette, Madelon and Waveform. They are all
available at the UCI Machine Learning Repository [23]. The Arcene, Gisette
and Madelon data-sets were originally proposed during the Feature Selection
Challenge organised during NIPS 2003 [24] and they point out different difficul-
ties. Actually, Arcene data-set illustrates the case where the number of available
sample points is small with respect to the data dimension; this problem arises fre-
quently in real application such text mining, mass spectrometry or bioinformatic.
Madelon data-set was artificially constructed to emphasised the difficulty of the
feature selection when no feature is informative by itself. Waveform data-set il-
lustrates the case where the different classes largely overlap. Table 1 gathers some
the information about these data-sets. The probes are artificial features which
were added to facilitate the assessment of the feature selection methods; they
were drawn at random from a distribution resembling that of the real features
except for the waveform data-set were they are normally distributed.

Table 1. Data-sets used in our experiments: N is the sample size, n is the number of
features, nprobe (resp. %probe) is the number (resp. rate) of probes and C is the number
of classes.

Data-set Domain N n nprobe %probe C

Arcene Mass spectrometry 200 10000 3000 30.0 % 2
Gisette Digit recognition 7000 5000 2500 50.0 % 2
Madelon Artificial 2600 500 480 96.0 % 2
Waveform Artificial 5000 40 19 47.5 % 3



Unsupervised Variable Selection 7

4.2 Laplacian Score

In our experiments, the Laplacian Score [25] was retained as pertinence crite-
ria; it measures the locality preserving power of the features. The steps of the
algorithm given by [25] are the following:

1. Construct the k nearest neighbours graph G: θ(n.N2).

2. If nodes i and j are connected in G, put Sij = e−(dij/t)2 where dij is
the distance between sample points i and j, and t is a suitable constant.
Otherwise, put Sij = 0: θ(k.N).

3. Let fi be the column vector of the ith feature values and L = D − S be the
Laplacian of the graph G where D = diag(S.

−→
1 ). Compute the Laplacian

Score Li of the ith feature as

Li =
f̃T

i Lf̃i

f̃T
i Df̃i

(8)

where f̃i = fi −
fT

i D
−→
1

−→
1

T
D
−→
1

−→
1 (9)

This step requires θ(n.N2) operations.

The time complexity of each step is indicated above and the overall time com-
plexity of the method proposed is θ(n.N2) where n and N are respectively the
number of variables and the number of sample points. In our experiments, the
number of neighbours k was set to 5 and the constant t was chosen as the max-
imum distance between to connected sample points.

4.3 Evaluation methodology

The labels of the sample points from the data-sets used in our experiments were
available and the scoring functions chosen aims to preserve the local topology
of the data space; thus the accuracy of the k-nearest neighbours classifiers was
used as performance measure of the method proposed. The stability of the subset
selected is measured using the Jaccard and the Rand statistics averaged on
the subset selected pairs set. A 10-fold cross-validation approach was used to
evaluate the accuracy of a k-nearest neighbours classifier. The original sample
was randomly partitioned into 10 sub-samples. Of the 10 sub-samples, a single
sub-sample is retained as the validation data for evaluating the performance of
the system, and the remaining 9 sub-samples are used as training data. The cross-
validation process is then repeated 10 times, with each of the 10 sub-samples
used exactly once as the validation data. The 10 results from the folds then are
averaged.

In our experiments, we estimated the scoring function on p = 100 inde-
pendent random sub-samples of the training subset with replacement. The α

control parameter was set to 0.5. The scoring function was computed using only
sub-samples of the training set and r denotes the ratio between the number of
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Table 2. Stability of the subset selected: r is the ratio between the number of sample
points and the number of features, the values indicated are averaged over the 10 folds
and the standard deviation are given between brackets.

Data-set Method Proposed 1-NN 3-NN 5-NN

Arcene Jaccard 0.957 [0.008] 0.743 [0.180] 0.684 [0.192] 0.671 [0.181]
(r = 0.018) Rand 0.958 [0.005] 0.758 [0.176] 0.708 [0.180] 0.696 [0.174]

Arcene Jaccard 0.894 [0.012] 0.645 [0.167] 0.638 [0.160] 0.659 [0.190]
(r = 0.01) Rand 0.936 [0.008] 0.687 [0.155] 0.987 [0.148] 0.684 [0.181]

Gisette Jaccard 0.911 [0.018] 0.787 [0.115] 0.806 [0.124] 0.782 [0.137]
(r = 1) Rand 0.949 [0.011] 0.853 [0.101] 0.878 [0.087] 0.858 [0.100]

Gisette Jaccard 0.976 [0.014] 0.709 [0.124] 0.650 [0.144] 0.609 [0.133]
(r = 0.1) Rand 0.977 [0.013] 0.789 [0.096] 0.705 [0.135] 0.697 [0.137]

Madelon Jaccard 0.999 [0.002] 0.991 [0.010] 0.986 [0.015] 0.996 [0.003]
(r = 1) Rand 0.999 [0.002] 0.991 [0.010] 0.987 [0.014] 0.996 [0.003]

Madelon Jaccard 0.986 [0.007] 0.969 [0.011] 0.967 [0.011] 0.966 [0.013]
(r = 0.1) Rand 0.986 [0.007] 0.970 [0.010] 0.968 [0.011] 0.967 [0.013]

Waveform Jaccard 0.617 [0.104] 0.779 [0.125] 0.784 [0.123] 0.811 [0.113]
(r = 10) Rand 0.699 [0.105] 0.861 [0.086] 0.870 [0.080] 0.887 [0.073]

Waveform Jaccard 0.638 [0.142] 0.728 [0.110] 0.681 [0.152] 0.752 [0.117]
(r = 1) Rand 0.765 [0.109] 0.834 [0.082] 0.798 [0.112] 0.855 [0.077]

features over the sub-sample size in the following. To evaluate the robustness of
our method to the small sample size issue, we use two different values of the r

parameter. For a given data-set, the lower is r, the more difficult is the relevance
estimation.

The results achieved by the unsupervised method proposed are then com-
pared with those of the best k-nearest neighbours classifiers that can be obtained
given the set of rankings R and the value of the α parameter (see equation 7);
they are referred as ”supervised (k-NN)”.

4.4 Results and discussion

Figure 1 compares the size of the original feature subset (before adding probes),
the size of the feature subset selected by the method presented above and the
size of the best subsets according the performance of the 1-NN, 3-NN and 5-
NN classifiers. In addition, table 2 indicates the averaged agreement between
the subset selected and the collection of the top-k feature subsets. Figure 2
summarises the error rate of the 1-NN classifiers using the whole set of features,
the subset selected by the method presented above and the subset that leads to
the best classifier; the performance of the 3-NN and 5-NN classifiers are very
similar and have been disguarded due to space limitation. As shown by the
figure 2, a small increasing of the 1-NN classifier error rate is observed with the
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Size of the feature subset selected
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Fig. 1. Size of the feature subset selected: index 100 corresponds to the whole set of
features (original features + probes), r is the ratio between the number of sample
points and the number of features, the values indicated are averaged over the 10 folds
and the standard deviation are given between brackets. The supervised method refers
to the choice of the classifier with the lowest error rate.

Madelon data-set when there are too few sample points to estimate the scoring
function. Actually, few highly redundant features were identified as relevant by
the Laplacian Scores; hence, an important part of the relevant information is lost
(see fig. 1). On the contrary, the selection does not operate on the Gisette data-
set when too few sample points are available to compute the scoring function.

The proposed method does not perform as well as the supervised criterion
with the Arcene and the Waveform data-sets whereas most of the noisy dimen-
sions are removed. Although no significant improvements in respect with the
baseline (no feature selection) are observed with the Arcene data-set, all the
probes are eliminated. With the Gisette and the Madelon data-sets, since the
sample size is sufficient to estimate the scoring function, the accuracy of the 1-NN
using the unsupervised method proposed are comparable with those obtained by
the supervised criteria.

Anyway, the stability of the subset selected by the method proposed is em-
phasised by the table 2: the subset selected by the supervised method vary a
lot among the different folds. The resampling causes fluctuations of the lapla-
cian scores which might account for the greater stability of the method proposed
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Error rates of the 1-NN classifier

without feature selection
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Fig. 2. Error rates of the 1-NN classifiers: r refer to the ratio between the number of
sample points and the number of features, the values indicated are averaged over the
10 folds. The supervised method refers to the choice of the classifier with the lowest
error rate.

against the supervised approach. On the one hand, the supervised method op-
erates separately for each scoring function evaluation. On the other hand, the
approach proposed operates globally which improves its robustness. Then, the
lowest values of the Jaccard and Rand indexes are observed with the Waveform
data-sets where the results can be much improved; this leads us to assume that
the stability of the subset selected can be thought as a potential indication to
predict whether the feature selection correctly operates or not. Obviously, this
point should be further investigated before to conclude.

The approach proposed relies on resampling and the detection of random-
ness. It should be noticed that the use of subsampling methods involves a high
computational overload. Nevertheless, the computation needed by our approach
can be easily distributed to overcome this problem: (i) the different scoring func-
tion evaluations are independent from each other, (ii) the expected number of
permutations such the variable j appears at the kth does not depends on any
other variable and (iii) the χ2 statistics can be computed separately for each
rank k.



Unsupervised Variable Selection 11

5 Conclusion and perspectives

In this paper, we propose a general method to address the subset selection is-
sue when only a scoring function ranks the features according their relevancy
is available. The approach proposed relies on resampling and the detection of
randomness. It should be noticed that the use of subsampling methods involves
a high computational overload, but the computation needed by our method can
be easily distributed to overcome this problem.

The effectiveness of the method and the stability of the subset selected have
been demonstrated on 4 data-sets which span at least three major issues of
feature selection: small sample size with respect to the data dimension, lack of
feature informative by itself and classes overlapping. The experiments presented
above were done in the unsupervised learning context but obviously it applies in
the semi-supervised or supervised context as soon as the additional information
available is included in the scoring function; we suppose that this can lead to
robustness and stability improvement. The results presented point out that the
method proposed does not perform well when the sub-sample size used to com-
pute the scores is too small, namely lower than 100. We feel that this problem
might be corrected by increasing the number of scores computed.

Future work includes a rigourous study of the relationships between the data
dimension n, the number of sub-samples used p and the size of the sample used
to estimate the relevance of the features; anyway, we feel that these relationships
depend on the scoring function selected and we plan to repeat the experiments
presented using the weighting coefficients computed by the AVW-k-means algo-
rithm [26] and by the ω-SOM algorithms [27].
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