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Abstract. The enormous increase of the size in databases makes find-
ing an optimal subset of features extremely difficult. In this paper, a new
feature selection method is proposed that will allow any subset evaluator
-including the wrapper evaluation method- to be used to find a group of
features that will allow a distinction to be made between the different
possible classes. The method, BARS (Best Agglomerative Ranked Sub-
set), is based on the idea of relevance and redundancy, in the sense that
a ranked feature (or set) is more relevant if it adds information when it
is included in the final subset of selected features. This heuristic method
reduces dimensionality drastically and leads to improvements in the ac-
curacy, in comparison to a complete set and as opposed to other feature
selection algorithms.
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1 Introduction

A feature selection algorithm combines two processes: one is the search for an
optimum and the other is an evaluation of sets of features. The evaluation mea-
sure estimates in the latter process will guide the search. Therefore, a feature
selection algorithm is simply a search algorithm that should optimize a mea-
sure that shows how good a subset of features is (or an individual feature).
There are many possible combinations of search methods and feature evaluation
measures [1]. However, search methods can be too costly in high-dimensional
databases, particularly if a learning algorithm is applied as an evaluation crite-
rion.

There are two ways to group feature selection algorithms, depending on the
chosen evaluation measure: one, according to the model used (filter or wrapper)
and two, according to the way in which the features are evaluated (individually
or by subsets).

⋆ Corresponding author.
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The filter model evaluates features according to heuristics based on overall
data characteristics, notwithstanding the classification method applied, whereas
the wrapper uses the behaviour of a classification algorithm as a feature eval-
uation criterion. The wrapper model chooses the features that show the best
classification and help to improve a learning algorithm’s behaviour. The down-
side is that its computational cost [2, 3] is higher than the filter model. A key
factor in wrapper methods is the way in which a search is made in the feature
subset space [4]. It appears next to such search strategies as sequential greedy
search, best-first search and genetic algorithms [1]. Most of them have a tempo-
ral O(n2) complexity and cannot be applied in databases with tens of thousands
of features.

On the other hand, FR (Feature Ranking) methods evaluates features indi-
vidually, whereas FSS (Feature Subset Selection) evaluates the benefits of each
candidate subset. In the FR algorithm category, the first k features will make up
the final subset. This is a good approach for high-dimensional databases, given
their linear cost in relation to the number of features. However, in algorithms ca-
pable of feature subset selection, some sort of search strategy is used to generate
the candidate subsets. There are many different search strategies: exhaustive,
heuristic and random, combined with various types of measures that make up
a large number of algorithms. The temporal complexity is exponential in rela-
tion to the dimensionality of the data in an exhaustive search and quadratic
in a heuristic search. In a random search, the complexity may be linear to the
number of iterations [5], but experience shows that the number of iterations
needed to find an optimal subset is at least quadratic in relation to the number
of features [6].

The aim of this paper is to study and propose a feature selection method that
can be applied to high-dimensional databases in a supervised learning framework,
concretely for classification purposes. Two classification learning algorithms will
be used to compare the effects of feature selection: one probabilistic (näıve Bayes)
and a second one based on decision trees (C4.5).

The paper is structured as follows: after an introduction on the particularities
of feature subset selection in large databases, a review will be made of the related
literature and the general concepts of relevance and redundancy. BARS algo-
rithm is described in Section 3, and the results obtained are shown in Section 4.
Finally, Section 5 gives some of the more interesting conclusions.

2 Related work

The limitations of both approaches, FR and FSS, clearly suggest the need for
a hybrid model. Lately, a new framework [7] for feature selection is used which
includes several of the methods given above, as well as the concepts of feature
relevance and redundancy. There are many definitions of relevance. We have
chosen the one offered by Caruana and Freitag [8] that is considered especially
suited to obtain a predictive feature subset. With respect to the redundancy, it
is usually expressed in terms of a correlation between features. Between pairs
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of variables we can distinguish linear and non-linear correlation. However, it is
not so clear how to know when a feature is correlated with a set of features.
Koller and Sahami [9] apply a technique based on cross-entropy (KL-distance,
Kullback & Leibler [10]), called Markov blanket filtering, to eliminate redundant
features.

In databases with a large number of features, the selection process usually
is divided into two stages: In stage one, features are evaluated individually, pro-
viding a ranking based on a filtering criterion. In stage two, a feature subset
evaluator (filter or wrapper) is applied to a certain number of features in the
previous ranking (the ones that pass a threshold, or the first k), following a
search strategy. Xing et al. [11], Yu and Liu [7], Ding and Peng [12] and Guyon
et al. [13] are among the most cited works that follow this path. Another work
employed a linear sequential search over a ranking [14], and any type of criteria
could be used in ranking and in generating a feature subset.

When databases with a lot of features are ranked, there are normally many
features with similar scores. The frequent selection of redundant features in the
final subset is often criticized. However, according to Guyon and Elissefi [15],
taking into account presumably redundant features can reduce noise and, there-
fore, a better separation between the various classes can be obtained. Moreover,
a very high correlation (in absolute value) between variables does not mean that
they do not complement each other. Consequently, the idea of redundancy in this
paper is not based on the measure of correlation between two features. Rather,
it is based on any subset evaluation criterion, which may be a filter or wrapper
approach. In this sense, a feature (or set) is selected if additional information
is obtained when it is added to the previously selected feature subset, and re-
jected in the opposite case because the information provided is already contained
(redundant) in the previous subset.

3 Agglomerative search for feature subset selection

In this work, a new method is proposed. It is called agglomerative due to the
way it constructs the final subset of selected features. The method begins by
generating a ranking. Then, pairs of features are obtained with the ranking’s
first features, in combination with each one of the remaining features on the list.
The pairs of features are ranked according to the value of the evaluation, and the
process is repeated, that is, the subsets made up by the first sets on the new list
are compared with the rest of the sets. The process ends when only one feature
subset is left, or when combining the subsets no longer causes an improvement.

Our approach uses a fast search through the attribute space and any subset
evaluation measure, classifier approach included, can be embedded into it as
evaluator. Therefore, a feature subset evaluator, named SubEvaluator, is used to
select a small group of features. Thus, given a SubEvaluator and given a feature
subset X, a search is made in the P(X ) space for the feature subset with the best
evaluation result, using the value to compare the behaviour of the SubEvaluator
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on the test subset. Before continuing, we shall establish the concepts of accuracy
and measure value:

The result of dividing the number of correct classifications by the total num-
ber of samples examined is wide known as accuracy (Γ ). Then, given a set tagged
E of m instances (xj , yj), where j = 1, . . . ,m, each one composed of n input val-
ues xj,i with (i = 1, . . . , n) and one output yj , and given the classifier L, in the
following expression, if L(xj) = yj (example well classified) then 1 is counted,
and 0 in any other case.

Γ (E, L) =
1

m

m∑

j=1

(L(xj) = yj)

Considering that, in this paper, the selection algorithms are subsequently
applied to a classification task, the definition of accuracy given for the total set
of data, applied to a feature subset S, would be:

Γ (E/S, L) =
1

m

m∑

j=1

(L(S(xj)) = yj)

Therefore, Γ (E/S, L) is the accuracy, applying classifier L to the database with
the features that belong to subset S. In addition to a wrapper measure to evaluate
a feature subset, we can use a filter type measure that also returns a real value
on the goodness of the said subset. This value, which we will call a measure
value, can be defined as:

Definition 1 (Measure value) Let E be a set of tagged data; S a feature subset

of E data; the Υ (E/S, 6 L) measure value is the result of applying the evaluator

type subset filter 6 L considering only the S data subset.

Therefore, if 6 L is a subset evaluator, we can use two similar expressions: on
the one hand Γ (E/S, L), which is valid for evaluating a subset by means of a
wrapper measure; on the other hand, the expression Υ (E/S, 6 L), that evaluates
the S subset by means of an 6 L filter.

To make it easier, and to unify the notation, hereinafter the evaluation of a
feature subset S will be annotated by Γ (E/S, L) assuming a dual role (wrapper
or filter).

Let Ψ1 = {A1
1, A

1
2, . . . , A

1
n} be the initial list of of candidate subsets, where

A1
i = {Xi}, that is, each subset on the list has a feature. Let Ψk

1 and Ψ ǫ
1 be two

ranked sequences obtained from the set Ψ1:

Ψk
1 =< A1

(1), . . . , A
1
(k) >

the k first subsets of Ψ1 ranked by L descendingly and

Ψ ǫ
1 =< A1

(1), . . . , A
1
(ǫ) >

the first ǫ of Ψ1 ranked likewise by L, k ≤ ǫ ≤ n, and n being the total number
of features.
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T1 will be the result of applying the L subset evaluator to the subset best
placed on the Ψk

1 list, in this case, the most valued feature:

T1 = Γ (E/A1
(1), L)

As indicated above, Γ encompasses the accuracy value of a L wrapper as well
as the measure value obtained with a filter type measure Υ (E/A1

(1), 6 L).

Sets based on the two above ranked sequences (Ψk
1 and Ψ ǫ

1) are constructed
below in such a way that each set of the first sequence is joined to each set of
the second sequence. Of the new sets generated, we are only interested in the
ones that improve the best result obtained with the subsets of Ψ1, that is, the
ones with a more favourable evaluation than T1. We will call this new set Ψ2:

Ψ2 = {A2
i |A

2
i = A1

(j) ∪ A1
(l)

∀j : 1..k and ∀l : 1..ǫ with A1
(j) ∈ Ψk

1 and A1
(l) ∈ Ψ ǫ

1 and with Γ (E/A2
i , L) >

T1}.
Likewise, Ψk

2 and Ψ ǫ
2 will be two ranked sequences obtained from the Ψ2 set.

In general, the list of solutions Ψp is defined as the candidate feature subset. It
is made up of each subset by the joining of two subsets from the above list of
solutions, and it obtained a more favourable evaluation than the best subset on
that list. That is,

Ψp = {Ap
i |A

p
i = Ap−1

(j) ∪ Ap−1
(l) } ∧ Γ (E/Ap

i , L) > Tp−1}

The process continues until no new subsets are generated, or until the ones
generated do not exceed the value of the goodness of the best subset on the
above list of solutions (let Ψp be ∅). Therefore, the solution is established as

S = Ap−1
(1) , the most relevant subset on the last list with available solutions.

Unlike the conventional forward sequential search, where the best feature,
best pair, best set of three and so on are obtained until no improvement oc-
curs, the BARS method makes a search at a lower cost because it covers a
smaller part of the features space. Furthermore, the search path developed by
BARS is done around the most relevant subsets at each given moment, choosing
the best k subsets in each cycle of the algorithm, and expanding the search to
other relevance subsets in the ranking (ranking percentage ǫ). This way we can
avoid getting caught in local minima. This approach provides the possibility of
efficiently applying any evaluation measure, wrapper models included, in high-
dimensional domains. The final subset is obviously not the optimum, but it is
unfeasible to search for every possible subset of attributes through the search
space.

3.1 Algorithm

The process followed until the final subset is obtained is (see algorithm 1):
Step one generates a feature ranking (line 1) ranked from best to worst according
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Algorithm 1 BARS–Best Agglomerative Ranked Subset.

Require: E–data set, U–ranking criterion, L–SubEvaluator, k–No. of initial sets in the
ranking, ǫ–limits the number of subsets in the ranking.

Ensure: BestSub–feature subset
1: R ⇐ generateRanking(U, E))
2: p ⇐ 1
3: SolutionsListΨp ⇐ ∅
4: for i = 1 until n do

5: SolutionsListΨp ⇐ SolutionsListΨp ∪ {A1
i } (A1

i = {Xi} ∧ Xi ∈ R)
6: end for

7: while #SolutionsListΨp > 1 do

8: T ⇐ Γ (E/Ap
1, L)

9: p ⇐ p + 1
10: SolutionsListΨp ⇐ ∅
11: i ⇐ 1
12: for j = 1 until k do

13: for l = j + 1 until ǫ do

14: Ap
i ⇐ Ap−1

(j) ∪ Ap−1
(l)

15: if Γ (E/Ap
i , L) > T then

16: SolutionsListΨp ⇐ SolutionsListΨp ∪ Ap
i

17: i ⇐ i + 1
18: end if

19: end for

20: end for

21: rank SolutionsListΨp by Γ (E/Ap
i , L)

22: end while

23: BestsSub ⇐ Ap−1
1

to an evaluation measure (U). Next, a list of solutions is generated (line 2-6,
SolutionsListΨp), in such a way that a solution for each individual feature is
created and the same ranking order is maintained. The steps required to make
an agglomerative search is shown on lines 7-22. At the end, the algorithm returns
the best positioned feature subset of all the subsets evaluated.

The agglomerative search consists in making a subset of relevant features by
joining subsets with a lower number of features.

Each iteration of the repetitive while structure generates a new list of solu-
tions from the previous structure. Each candidate set, made by joining two sets
from the previous list of solutions, will become part of the next list of solutions
if, when the subset evaluator L is applied to it, it gives back a higher measure
value (Γ ) than the one obtained with the best (or first) subset from the previous
list of solutions (T ). To prevent the algorithm from having a prohibitive time
cost, new sets of features are generated by joining the first sets to the remaining
previous list of solutions. That is, the first set on the list is joined to the second
set, next the first set is joined to the third set, and so on until the end of the
list. Next, the second set of the list is joined to the third set, the second set and
the fourth set, and so on until the last set on the list. This process of combining
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a set of features with the rest of the sets on the list is carried out with the best
k feature sets from the previous list of solutions (line 12).

In line 13, the input parameter ǫ can limit the number of new subsets. In data
sets with an extremely high dimensionality, or when a high computational cost
SubEvaluator is used, ǫ can be fixed to a percentage of the previous solutions
number.

0,100

0,150

0,200

0,250

0,300

1 2 3 4 5 6 7 8 9 10

Step 1 Step 2 Step 3 Step 4

Subsets

Evaluation

Fig. 1. Example of the reduction process followed by BARS. The horizontal lines
represent the limits at the end of each heuristic stage.

Figure 1 shows an example of the feature selection process with BARS,
using the non-linear correlation CFS (Correlation–based Feature Selection al-
gorithm [16]) as a subset evaluation measure (L). The figure represents the eval-
uation of the feature subsets in the different algorithm iterations. The numbers
that can be seen on the abscissa axis represent the order of the subset in the
corresponding ranking, and the ordinate axis shows the evaluation obtained for
each subset. The horizontal lines set the limit at the end of each stage of the
algorithm.

Generating sets that were already evaluated occurs very frequently in the
process of combining two subsets. Therefore, the evaluated subsets will be con-
trolled to prevent the evaluation from being repeated.

4 Experiments and results

The aim of this section is to evaluate our approach in terms of classification
accuracy, degree of dimensionality and speed in selecting features, in order to
see how good BARS is in situations where there is a large number of features
and instances.
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Table 1. UCI data sets. Acron-acronym. Atts-number of attributes. Inst-number of
instances.

Data Acron. Atts. Inst. Class

ads ADS 1558 3279 2
arrhythmia ARR 279 452 16

hypothyroid HYP 29 3772 4
isolet ISO 617 1559 26

kr vs kp KRV 36 3196 2
letter LET 16 20000 26

multi feat. MUL 649 2000 10
mushroom MUS 22 8124 2

musk MUK 166 6598 2
sick SIC 29 3772 2

splice SPL 60 3190 3
waveform WAV 40 5000 3

Table 2. NIPS data sets. Acron-acronym. Atts-number of attributes. %Ran-
percentage of random Atts.

Data Acron. Atts. Inst. %Ran.

Arcene ARC 10000 100 30
Dexter DEX 20000 300 50

Dorothea DOR 100000 800 50
Gisette GIS 5000 6000 30

Madelon MAD 500 2000 96

The comparison was performed with two representative groups of data sets:
Twelve data sets were selected from the UCI Repository (Table 1) and five
from the NIPS 2003 feature selection benchmark [17]. In this group (Table 2),
the data sets were chosen to span a variety of domains (cancer prediction from
mass-spectrometry data, handwritten digit recognition, text classification, and
prediction of molecular activity). One data set is artificial. The input variables
are continuous or binary, sparse or dense. In this second group all data sets are
two-class classification problems. The full characteristics of all the data sets are
summarized in Tables 1 and 2. We chose two different learning algorithms, C4.5
and Näıve Bayes, to evaluate the accuracy on selected features for each feature
selection algorithm.

Figure 2 can be considered to illustrate the two blocks that always make
up a BARS algorithm. Therefore, this selection algorithm needs a ranking and
a feature subset measure. Several versions of BARS selection algorithms could
be made by combining the criteria for each group of measures (individual and
of subsets). Whenever the BARS algorithm appears, the criteria for generating
the ranking is given, as well as how feature subset quality was evaluated in
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Ranking
{SOAP, SU-CFS,

wrapper}

Subset
evaluation
{CFS, wrapper}

Original set
Ordered
features

Selected
subset

Fig. 2. Parts of a BARS selection algorithm.

the selection process. To clarify the components that BARS uses in each case
as much as possible, a subscript is put before BA that indicates the ranking
method used, and a superscript is placed after it to indicate the SubEvaluator.
In the experiments made for BARS, the same evaluation measure was used to
prepare the ranking as the one used in the second part of the algorithm employed
in the feature subset search. Two subset evaluation measures are used, one for
each type of approach (wrapper and filter-CFS). For instance, CF BACF shows
that CFS will be used as an individual measure in the first part and CFS as a
subset in the second part, and CF BAWR shows that NB or C4 classifier will be
used as a subset evaluator in the second part.

In the tests, BARS generated subsets from the three best subsets in the
solutions list it used at each stage, limiting the range to 50% of the solutions list
in wrapper type approaches and going to the end in the filter approaches. That
is, k = 3 and ǫ=50% and 100%, respectively.

Due to the high dimensionality of data, we limited our comparison to sequen-
tial forward (SF ) techniques, fast correlation–based filter (FCBF ) algorithm [7]
and the incremental ranked (BI) algorithm [14]. We chose two representative
subset evaluation measures in combination with SF search engine. One, de-
noted by SFWR, uses a target learning algorithm (NB or C4) to estimate the
worth of feature subsets; the other, denoted by SFCF , is a subset search al-
gorithm which exploit sequential forward search and use correlation measures
(CFS, Correlation–based Feature Selection algorithm [16]) to guide the search.
BI use the same nomenclature as BARS.

Tables 3, 4, 5 and 6 show the results obtained with NB and C4 classifiers.
By columns: the results obtained with BARS, BI and SF algorithms using
the wrapper as a subset evaluator and using CFS; FCBF algorithm; and the
results obtained with the complete database. The columns headed by Ac and
At% show the success rate and the reduction percentage respectively. On NIPS
data, the reduction percentage is too low to be comparable, therefore the number
of features (At#) is shown. In each case, the results were obtained by calculating
the mean of five executions of two crossed validations (5×2CV). Two reductions
were made in each execution, one for each training set, to prevent the selection
algorithm from being over-adjusted to the data used. A paired t-Student test
was applied to evaluate whether the difference between the wrapper approach
of the proposed algorithm and the other results was statistically significant at a
confidence level of 0.05.



10 Ruiz et al.

Table 3. Results obtained with NB for each feature selection algorithm on UCI big
Data. Ac-accuracy; At%- percentage of attributes retained. The symbols ◦ and • re-
spectively identify statistically significant (at 0.05 level) wins or losses over the second
column (NBBANB).

Data NBBANB
NBBINB SF NB

CF BACF
CF BICF SF CF FCBF Orig.

Ac At% Ac At% Ac At% Ac At% Ac At% Ac At% Ac At% Ac
ADS 95.80 0.5 95.42 0.7 95.83 1.1 94.61• 0.3 95.38 0.4 95.81 0.6 95.64 5.3 96.38
ARR 68.94 2.3 68.01 5.5 67.70 3.0 67.30 4.1 66.5 4.1 68.05 6.2 63.98 2.9 60.13
HYP 94.92 10.3 95.10 15.9 95.32 29.3 94.15• 3.4 94.15• 3.4 94.15• 3.4 94.90 18.3 95.32
ISO 77.41 3.4 83.30◦ 11.1 82.28 4.7 66.95• 3.8 77.61 11.1 80.79 15.4 74.62 3.7 80.42

KRV 94.09 11.4 94.27 13.9 94.32◦ 14.4 84.41 7.2 90.43• 8.3 90.43• 8.3 92.50 18.1 87.50•
LET 55.74 39.4 65.67◦ 68.8 65.67◦ 72.5 64.28◦ 56.3 64.28◦ 56.3 64.28◦ 56.3 65.06◦ 64.4 63.97◦
MUL 96.80 2.1 97.21 3.4 96.87 2.4 96.55 3.9 97.04 4.3 96.72 13.9 96.19 18.7 94.37•
MUS 98.68 7.3 98.78 9.5 99.01 13.6 98.52 4.5 98.52 4.5 98.52 4.5 98.52 16.4 95.10•
MUK 84.60 1.0 84.59 0.6 84.59 0.0 74.54 7.5 79.94 3.9 69.78• 9.8 72.29 1.7 83.56

SIC 93.88 3.4 94.55 8.3 93.88 0.0 93.89 3.4 93.89 3.4 93.89 3.4 96.25◦ 16.6 92.41
SPL 94.65 15.3 94.85 21.8 94.91 24.7 93.63• 10.0 93.63• 10.0 93.60• 10.2 95.49 36.3 95.26

WAV 80.38 21.3 80.85 30.5 81.55 32.3 80.34 35.3 81.01 31.0 80.12 37.0 78.42 15.3 80.02
Av. 86.32 9.8 90.36 15.8 89.19 16.5 85.08 11.6 86.24 11.7 87.70 14.1 86.26 18.1 85.44

Table 4. Similar to Table 3 with C4 classifier.

Data C4BAC4
C4BIC4 SF C4

CF BACF
CF BICF SF CF FCBF Orig.

Ac At% Ac At% Ac At% Ac At% Ac At% Ac At% Ac At% Ac
ADS 96.42 0.5 96.55 0.5 96.85 0.8 95.30 0.3 96.43 0.4 96.39 0.6 95.85 5.3 96.46
ARR 67.92 2.0 68.01 2.4 67.39 3.1 66.46 4.1 66.42 4.1 67.04 6.2 64.87 2.9 64.29
HYP 98.90 10.7 99.07 14.5 99.30 20.3 96.56• 3.4 96.56• 3.4 96.56• 3.4 98.03 18.3 99.36
ISO 68.15 2.7 69.43 3.6 N/A 67.29 3.8 72.68 11.1 71.94 15.4 66.63 3.7 73.38

KRV 94.09 11.1 95.11 17.2 94.26 13.6 84.41 7.2 90.43• 8.3 90.43• 8.3 94.07 18.1 99.07◦
LET 80.50 45.0 84.99 68.8 85.17 63.1 84.21 56.3 84.21 56.3 84.21 56.3 84.84 64.4 84.45
MUL 93.74 1.5 92.42 3.2 93.11 2.1 92.77 3.9 93.17 4.3 93.12 13.9 92.29 18.7 92.74
MUS 99.41 9.1 99.91◦ 18.6 100.00◦ 22.3 98.52• 4.5 98.52• 4.5 98.52• 4.5 98.84 16.4 100.00◦
MUK 95.71 4.9 95.43 5.8 N/A 94.44 7.5 94.06• 3.9 94.60 9.8 91.19• 1.7 95.12

SIC 96.33 7.2 98.28◦ 20.3 98.19◦ 19.0 96.33 3.4 96.33 3.4 96.33 3.4 97.50◦ 16.6 98.42◦
SPL 92.73 12.2 93.05 16.3 93.04 18.3 92.54 10.0 92.54 10.0 92.61 10.2 93.17 36.3 92.92

WAV 75.93 17.5 76.20 24.0 75.44 19.8 76.65 35.3 76.46 31.0 76.56 37.0 74.52 15.3 74.75
Av. 88.32 10.4 87.03 16.3 88.07 18.2 85.04 11.6 84.78 11.7 85.87 14.1 86.31 18.1 85.94

As it is possible to observe in Tables 3 and 4 obtained on data from Ta-
ble 1, chosen subsets by BARS are considerably smaller than the other com-
pared techniques and drastically less than the original set. With NB classi-
fier, the reduction percentage of BARS was 9.8%, while the other methods
obtained 15.8%–NBBINB, 16.5%–SFNB , 14.1%–SFCF and 18.1%–FCBF , al-
though with a light loss of precision. With C4.5 classifier the differences are
greater BARS was 10.4%, while the other methods obtained 16.3%–C4BIC4,
18.2%–SFNB , 14.1%–SFCF and 18.1%–FCBF , without significant lost of ac-
curacy.

Notice that in two cases with C4 classifier (ISO and MUK) SFWR did not
report any results after three weeks running, therefore, there are not selected
attributes nor success rates. Although it is supposed that the missed results
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Table 5. Results obtained with NB for each feature selection algorithm on NIPS Data.
Ac-accuracy; At#- number of attributes retained. The symbols ◦ and • respectively
identify statistically significant (at 0.05 level) wins or losses over the second column
(NBBANB).

Data NBBANB
NBBINB SF NB

CF BACF
CF BICF SF CF FCBF Orig.

Ac At# Ac At# Ac At# Ac At# Ac At# Ac At# Ac At# Ac
ARC 65.40 4.6 64.60 15.3 60.60 3.8 66.00 22.5 63.20 39.2 60.20 42.6 61.20 35.2 65.40
DEX 79.13 15.3 81.33 30.2 75.33 13.2 80.67 7.5 82.47 11.3 87.73 35.5 85.07 25.1 86.47◦
DOR 93.25 2.3 93.23 10.5 N/A 93.25 2.1 93.80 11.9 N/A 92.38 75.3 90.68
GIS 91.17 9.2 92.66 35.3 93.55◦ 24.2 87.26• 8.6 90.83 30.2 92.64 62.2 87.58 31.2 91.88

MAD 60.99 4.9 59.00 11.8 60.12 5.8 60.37 6.3 60.56 5.8 60.17 9.9 58.20 4.7 58.24

Table 6. Similar to Table 5 with C4 classifier.

Data C4BAC4
C4BIC4 SF C4

CF BACF
CF BICF SF CF FCBF Orig.

Ac At# Ac At# Ac At# Ac At# Ac At# Ac At# Ac At# Ac
ARC 63.60 2.7 65.80 7.9 62.40 3.7 61.60 22.5 59.00 39.2 56.60 42.6 58.80 35.2 57.00
DEX 78.30 5.8 80.27 18.9 90.47 8.7 80.40 7.5 81.47 11.3 80.13 35.5 79.00 25.1 73.80
DOR 93.20 2.6 92.13 7.2 N/A 93.20 2.1 91.63 11.9 N/A 90.33 75.3 88.73
GIS 93.00 11.5 93.29 26.9 N/A 89.60• 8.6 90.92 30.2 93.07 62.2 90.99• 31.2 92.68

MAD 68.40 4.3 73.02 17.0 72.99 12.4 69.30 6.3 69.77 5.8 69.29 9.9 61.11 4.7 57.73•

would favor to BARS, since SF has not finished because of the inclusion of
many attributes.

Actually, BARS demonstrates its relevance on very high–dimensional data
as it can be seen in Table 5 and 6. It is possible to be observed that in comparison
with FCBF the number of selected attributes is drastically smaller, without lost
of precision in the classification.

In regards to the time cost of the algorithms, it should be considered that
the computation times resulting from the filter approaches are not considerable
in comparison to the ones used for the wrapper approaches. In this case, BARS
and BI are similar, however, the time savings of BARS became more obvious
when the computer–load necessities of the mining algorithm increased. In many
cases the time savings were 7 times less, and we must take into account that SF
did not report any results on several data sets.

5 Conclusions

A new feature selection method has been presented that allows any subset eval-
uator -including the wrapper evaluation model- to be used to find a good set of
features for classification. Our technique BARS chooses a very small subset of
features from the original set with similar predictive performance to other meth-
ods. For massive data sets, wrapper–based methods might be computationally
unfeasible, so BARS turns out a fast technique that provides good performance
in prediction accuracy.
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