
Transferring Knowledge by Prior Feature

Sampling

Victor Eruhimov, Vladimir Martyanov, Aleksey Polovinkin

Advanced Analytics, LTDA, Intel Corporation
30 Turgenev st., Nizhny Novgorod, 603950, Russia

Abstract. The paper presents a novel method for transfer learning
through prior variable sampling. A set of problems defined in the same
feature space with similar dependencies of target on features is consid-
ered. We suggest a method for learning a decision tree ensemble on each
of the problems by prior estimation of variable importance on other prob-
lems in the set and using it for regularizing model learning for a small
amount of training samples. The method is tested on several simulated
and real datasets. In particular, we apply our method for a set of time
series classification (TSC) problems. Our analysis demonstrates an in-
triguing result: a model trained on several TSC problems can learn a
new problem with high accuracy from a low number of samples.

1 Introduction

The classical task of discriminative learning is to fit a model to a given data
called a training set. The validity of the fitting method is checked on a test set
that is assumed to be i.i.d. drawn from the same distribution as the training set.
A critical parameter that influences the model predictive power is the size of the
training set. Learning from too few samples can lead to poor generalization of
the model coming from either under- or over-fitting. This is also related to the
number of features used for prediction – the more predictors we have the more
samples we need to learn the dependence. A rule of thumb says that the num-
ber of samples should be 5 times larger than the number of features. In many
practical problems the predictive power of a model is limited by the training set
size. Problems like face recognition or gene expression analysis generate datasets
with the number of features much larger than the number of samples. A way
to overcome the limitation of the small training set is to introduce prior knowl-
edge transferred from similar problems. Some of pioneering works in the field
of transfer learning are [1–3]. [1, 4] suggest a transfer learning method based on
learning important features from different classification tasks and using feature
importance information (w.r.t. prediction of the target) to fit a model for a new
task. [5] shows how co-occurence of words calculated on several text classification
problems can be used as a prior for solving a new problem.

This paper proposes a novel approach to transfer learning. We show a sim-
ple modification to the Gradient Boosting Trees learning algorithm [6, 7] that



2 Eruhimov et al.

significantly improves learning efficiency by using information about the impor-
tance of features with regard to target prediction. This method can be applied
to learn a set of problems that are defined in the same feature space and where
the importances of each feature (to be defined in the next section) are similar for
all problems. We use several artificial and real datasets from different domains
to show that the approach is universal and can be applied to a very wide range
of problems. The next section contains an overview of Gradient Boosting Trees
and feature importance, Section 3 describes Prior Feature Sampling algorithm
and Section 4 discusses its application to transfer learning.

2 Feature Importance

We combine transfer learning with one of the best off-the-shelf classification
methods – Gradient Boosting Trees (GBT). It has all the properties of a uni-
versal learner: fast, works with mixed-type data, elegantly handles missing data,
invariant to monotone transformations of the input variables (and therefore resis-
tant to outliers in input space), has been proven to be among the most accurate
and versatile state-of-the-art learning machines. GBT is a serial ensemble of de-
cision trees [8] where every new tree constructed relies on previously built trees.
At every iteration c of GBT a new tree Tc is fitted to the generalized residuals
with respect to a loss function, where the size of the ensemble is chosen to avoid
overfitting (usually by monitoring validation errors.)

GBT provides (as a byproduct) a reliable estimate of the variable importance.
The importance measure from a single tree can be defined as [8]:

V I(i, T ) =
∑

t∈T

∆I(xi, t) (1)

where ∆I(xi, t) = I(t) − pLI(tL) − pRI(tR) is the decrease in impurity due to
an actual (or potential) split on variable xi at a node t. Here pL and pR are
probabilities of a sample that appeared in the node t to fall into the left tL and
right tR nodes correspondingly. We use Gini index [8] as the impurity function
for categorical target and the square of the target standard deviation for numeric
target.

Variable importance for GBT is defined as the variable importance (1) aver-
aged over all trees in the ensemble [6]:

V I(i) =
1

C

C
∑

c=0

V I(i, Tc) (2)

GBT builds shallow trees using all variables (on a subsample of the train-
ing data), and hence, it can handle large datasets with a moderate number of
inputs. Very high dimensional data is extremely challenging for GBT. Apart
from computational complexity problems (time complexity of the algorithm for
GBT learning is O(MNlog(N)) where N is the number of samples and M –



Transferring Knowledge by Prior Feature Sampling 3

the number of features) the model tends to overfit on data with few samples
and many irrelevant variables. The primary reason for that is the greedy algo-
rithm for learning a decision tree that can choose an irrelevant variable for a
split because it provides larger impurity reduction by chance. [9] addresses both
issues by introducing a ”Dynamic Feature Selection“ (DFS) method for learning
a GBT ensemble. The cornerstone idea of the method is to sample a subset of
variables for each split and choose the best one among this subset instead of the
whole set. Sampling weights for each variable are different and are updated iter-
atively after each new tree is added to the ensemble. So a variable that provided
large impurity reduction for the already learned trees has a higher probability
to be selected for splits in the next tree. However this method still requires a
considerable amount of samples as it is based on reliable estimation of feature
importance. The next section presents a very simple and effective modification
to a GBT learner that can generalize from very few samples given prior feature
importance.

3 Learning GBT with Prior Feature Sampling

Let us assume that we know feature importance V I(i) for each variable xi,
i.e. we know that some variables participate in splits more often with higher
impurity reduction values. However impurity reduction that is used as a primary
measure for a split has high variance for a small training set size. As a result
even a variable that is not relevant to the target can be selected for a split.
In order to regularize the search for a split we introduce variable pre-sampling
with probabilities proportional to variable importance. Let F = {xi}|i=1..M be
the set of all variables, ∆I(i, t) be the maximal impurity reduction obtained by
a split on variable xi in the node t, V I(i) – variable importance. We sample
a subset FL of L variables from F with probabilities pi ∝ V I(i). The classical
GBT algorithm splits on variable i∗ = arg max

xi∈F
∆I(i, t). We suggest searching for

the optimal split in a much smaller feature subspace FL: i∗ = arg max
xi∈FL

∆I(i, t).

The number of features L should be much smaller than the total number M ,
in our experiments we use L = ⌊

√
M⌋ unless stated otherwise. We call this

algorithm Prior Feature Sampling (PFS). Note that PFS is a method for training
a base learner so it is compatible with other ensemble learning methods such as
Adaboost [10] and Random Forests [11]. Various theoretical results obtained for
ensembles of generic base learners (e.g. [12]) or tree-based learners ([11]) about
generalization error bounds hold for ensembles of trees learned with PFS.

We will illustrate the method on a simple artificial dataset called Signum.
Let the feature space F = F1 ⊗ F2 ⊗ ... ⊗ FG be the Cartesian product of G

subspaces of the same dimensionality S so that the total number of features
M = SG. Each variable xi, i = 1..M is sampled from a uniform distribution in
the region [−1, 1]. Let ci = βg(i) be the importance of each group where g(i) is



4 Eruhimov et al.

the index of the group xi belongs to. Target variable

y = γ
∑

i=1..G

cisign





∑

{j|g(j)=i}

sign(xj)



 , (3)

where sign(x) is the sign function

sign(x) =

{

1, x > 0
−1, x ≤ 0

. (4)

Note that importances are decreasing exponentially so that for small β most of
target variation is provided by the first few groups.

We generate a dataset of M = 30 features consisting of G = 10 groups,
β = 0.5. We learn a GBT model using PFS algorithm with variable importance
V I(i) ∝ c2

i (since impurity is defined as the square of standard deviation of
target). The number of trees in GBT C = 200, and the regularization parameter
ν = 0.1 are constant throughout the paper. Figure 1 shows the dependence of
test error of classical GBT, GBT-DFS and GBS-PFS on the training set size.
The number of samples in the test set is fixed and equal to 10000. GBT-PFS is
superior to other methods for any number of training samples but the difference
is more significant for smaller number of samples when the variance of impurity
reduction is high and prior information is of more value to the learning engine.
This is also demonstrated by Figure 2 that compares test error for PFS with
L = 1 and L = ⌊

√
M⌋. The model with L = 1 that we will call PFS1 samples only

one variable for each split so that the choice of the variable to split on is entirely
based on prior knowledge and does not depend on the training data. PFS1 shows
lower test error than PFS on a smaller number of training samples when high
variance of impurity reduction prevents PFS splitting on right variables. It is no
surprise that PFS wins for larger training set size when estimation of impurity
reduction is closer to the expected value.

In order to illustrate how PFS learns a better model than GBT we plot
train and test errors versus the number of trees in the ensemble in Figure 3.
To make the results more interpretable we learn trees of depth equal to 1 –
so-called stumps. One can see that while GBT is able to optimize its training
error better than PFS, its generalization accuracy characterized by test error is
weaker. GBT selects variables to split on corresponding to maximum impurity
reduction on the training set but since there are few training samples these splits
do not provide low test error. Figure 4 shows the number of variables outside
the first two groups (i.e. two groups of the most important varaibles that explain
75% of target variation) selected for splitting normalized on the total number of
splits (that is equal to the ensemble size). One can see that GBT selects many
more unimportant variables than PFS.

In this paper we leave open the question of how good is our sampling strategy
compared to others (such as, for example, taking into account the number of
splits on each variable rather than impurity reduction). However we show below



Transferring Knowledge by Prior Feature Sampling 5

0 100 200 300 400

10
15

20
25

30

Number of train samples

T
es

t e
rr

or

DFS
PFS
GBT

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

Number of train samples

T
es

t e
rr

or
 / 

G
B

T
 te

st
 e

rr
or

L=1

L = M
1
2

Fig. 1: Test error vs. training set size.
Fig. 2: PFS test error normalized on
GBT test error vs. training set size.

that importance-based sampling provides a significant improvement over GBT
on a wide range of machine learning problems.

Practical machine learning problems rarely assume known variable impor-
tance. The next section considers transferring variable importance from other
problems.

4 Prior Feature Sampling for Transfer Learning

Let us assume that we have a set of problems D = {Dk}|k=1..K defined on
the same feature space F . Furthermore we will assume that problems in D have
similar variable importance. However all of the problems have small training sets
so that an estimation of variable importance on one dataset has high variance.
Suppose that we want to learn a model of D

k̂
∈ D. We start by learning a GBT

model for each of the datasets Dk ∈ D\D
k̂

and calculating variable importance

V I(k)(i). Then we average importance over datasets V I
(k̂)
p (i) = 1

K−1

∑

k 6=k̂

V I(k)(i)

and use V I
(k̂)
p (i) as feature importance for the PFS method. Note that because

of our leave-one-out strategy sampling weights do not depend on D
k̂
. If variable

importances for Dk are different and in order to benefit from more samples we
might want to take into account variable importance from D

k̂
.

Below we demonstrate the results on several artificial and real datasets. In
each experiment we learn DFS and PFS models 10 times on each dataset to
account for model variance coming from random variable selection for each split.
We also learn 10 GBT models for each experiment. We compare test errors



6 Eruhimov et al.

0 100 200 300 400

10
20

30
40

50

ensemble size

pr
ed

ic
tio

n 
er

ro
r

GBT train
GBT test
PFS train
PFS test

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

ensemble size

po
rt

io
n 

of
 v

ar
ia

bl
es

 o
ut

si
de

 o
f f

irs
t t

w
o 

gr
ou

ps

GBT
PFS

Fig. 3: GBT and PFS stumps training
and test error versus ensemble size.

Fig. 4: The number of variables outside
the first two groups selected for splits
normalized on ensemble size.

distribution of different learning algorithms for each dataset using two one-sided
t-tests with p-values 0.05.

4.1 Signum

The first example is a class of datasets obtained by Signum generator described
in the previous section. We generate 10 datasets with the same β equal to 0.5
and different γ sampled from a uniform distribution in [0, 1]. The number of
samples in each training dataset is equal to N = 100. As responses in different
datasets have different variation we calculate the ratio of PFS test error to GBT
test error. The value of this ratio averaged over all 10 datasets is equal to 0.87. t-
tests show that PFS is superior to GBT for 8 datasets and the difference between
methods on the remaining two datasets is not statistically significant.

4.2 Linear regression

This section considers experimental results on the class of datasets with linear
dependence of response on predictors. Let x = (x1, . . . , xm, xm+1, . . . , xM ) be a
numeric vector of variables, uniformly distributed in [0, 1], where x1, . . . , xm are
features that influence the target, xm+1, . . . , xM are ”noise“ features. The target
variable y is a linear function of x1, . . . , xm: y =

∑m

i=1 cixi. Coefficients c1, . . . , cm

are drawn from the uniform distribution in [0, 1] for each dataset independently.
We generate 10 datasets with the number of training samples N = 100, number
of test samples Ntest = 100, m = 4, M = 104 (so the number of ”noise“ variables
is equal to 100). As a result we get datasets where target depends on the same



Transferring Knowledge by Prior Feature Sampling 7

4 variables but the dependences are different for different datasets. Also each
dataset has 100 variables irrelevant to the target. As in the previous section
we run PFS using leave-one-out scheme, calculating variable importance on 9
datasets and using it for learning a model on the remaining one. A success of
a learning engine on this dataset depends strongly on the ability to filter out
irrelevant variables. This is not the strongest side of GBT so we use a classical
filter based on Pearson test (p-value 0.05) for each predictor variable versus
target. Baseline GBT model is learned on variables selected by the test. The
results are shown in Figure 5. When the training set size is sufficiently small
PFS does a better job of filtering irrelevant variables than Pearson test as it
takes advantage of more samples.

Let us note that there are methods such as [13] that successfully solve exactly
the same problem. Our goal here is to show that PFS, being a general method
that does not make any strong assumptions about the dependence of response on
predictors, can filter out a large set of irrelevant variables and learn an accurate
model.

We have repeated the experiment 3 times and for only one dataset and only
one model instance (once in 300 cases – we have 10 datasets and we learn 10
models for each one) we got a PFS model with higher test error than DFS model
(the rest of the data shows superiority of PFS).

20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

0.
5

Number of train samples

T
es

t e
rr

or

GBT
DFS
PFS

0 1000 2000 3000 4000

2e
−

06
5e

−
06

1e
−

05
2e

−
05

5e
−

05
1e

−
04

2e
−

04

Index

Im
po

rt
an

ce
 q

ua
nt

iti
es

average
.95−quantile

Fig. 5: Linear Regression problem: the
dependence of test error on the number
of samples.

Fig. 6: The distribution of variable im-
portance for UCR datasets.

4.3 Handwritten digit recognition

A large class of machine learning problems comes from computer vision. We
illustrate PFS approach on the task of handwritten digit recognition with MNIST
dataset [14]. We learned GBT models on even digits (classifying each versus each)
represented by intensity values in each pixel and calculated feature importance



8 Eruhimov et al.

for each feature (pixel). Images of feature importance (resolution 28x28 pixels)
are presented in Figure 7. Then GBT and PFS models were learned on odd
digits, each versus each, with 10 samples per task (5 samples per class) chosen
randomly from the training dataset. Each model was tested on 10000 samples
sampled from the test dataset. Table 1 summarizes experimental results for GBT
and PFS methods. Each model was trained 10 times independently. The table
shows average test errors, bold indicates statistically significant difference in test
error distributions (detected with one-sided t-tests, p-value equal to 0.05). One
can see that PFS is able to learn more accurate models compared to GBT for
all tasks except for one. The most of the PFS models have low test errors (less
than 0.2) in spite of low number of training samples.

5 10 15 20 25

5
10

15
20

25

x

y

5 10 15 20 25

5
10

15
20

25

x

y

5 10 15 20 25

5
10

15
20

25

x

y

(a) (b) (c)

Fig. 7: Variable importance for MNIST dataset: (a) average, (b) 5% quantile, (c) 95%
quantile. Black corresponds to the maximum importance.

Dataset GBT PFS

1 vs 3 0.23 0.15

1 vs 5 0.26 0.11

1 vs 7 0.13 0.08

1 vs 9 0.20 0.29
3 vs 5 0.39 0.34

3 vs 7 0.28 0.09

3 vs 9 0.37 0.26

5 vs 7 0.19 0.14

5 vs 9 0.23 0.16

7 vs 9 0.36 0.28

Table 1: Average test errors on
MNIST dataset.

20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Number of train samples

T
es

t e
rr

or

GBT
PFS

Fig. 8: The dependence of test er-
ror on the number of training sam-
ples for MNIST problem 1 vs 3.



Transferring Knowledge by Prior Feature Sampling 9

4.4 Time series classification

Time Series Classification (TSC) is a field recently bursting with new results
and applications. Variables used for prediction in a TSC problem are ordered
and represent a process in time. An extensive overview of time series classifica-
tion methods is given in [15]. One of the frequently used approaches to a TSC
problem is to extract salient features from each signal and transform TSC task
into a regular machine learning problem. Many feature sets have been evaluated
including SVD (Singular Value Decomposition) features, DFT (Discrete Fourier
Transform), coefficients of the decomposition into Chebyshev Polynomials, DWT
(Discrete Wavelet Transform), PLA (Piecewise Linear Approximation), ARMA
(AutoRegression Moving Average) coefficients, various symbolic representations
[16, 17]. However none of these feature sets is universal enough to give compet-
itive results on a wide variety of problems. A study done in [18] showed that
a learning engine can benefit from multiple feature sets, but at the same time
learning on too many features causes overfitting. Following this work we con-
struct our feature set by combining several different types of features: Wavelets,
Chebyshev polynomials, Raw features, first 5 statistical moments.

Surprising as it may seem, one of the best state-of-the-art methods for TSC
is one-nearest-neighbor (1NN) with measure between two series called Dynamic
Time Warping (DTW) [19]. One of the important reasons for strong performance
of 1NN method on TSC problems is invariance to warping of time axis that is
provided by DTW measure. In order to have our method generalize well on
datasets with significant time warping we add warp-invariant features to our
feature set. A detailed description of our feature set is given in [18].

We have tested PFS on the UCR corpus [20] of TSC problems. Each of the
datasets has a different number of features due to different time series length
so for each dataset with time series length Q that we learn we scale time series
from all other datasets to Q by piecewise-linear interpolation in order to match
feature spaces.

Although there is no explicit indication that different TSC problems have
similar feature importance there are several clues pointing to this conclusion. To
start with, most of the signals in UCR TSC problems are smooth and classes
are defined by smooth features. This means that most of the time a class could
be rather recognized by large time-scale features than by small time-scale. How-
ever this is not true for all datasets so we cannot filter out small-scale features.
Another argument was pointed out in [18] where, although all feature types
were important and removal of one of them caused increase of test errors on
at least one dataset, the removal of wavelet features caused larger increase of
test errors on more datasets compared to other feature types. Figure 6 shows
variable importance averaged over all UCR datasets and 95% quantile versus
the feature index, the features being sorted by the decreasing average variable
importance. These results are taken for time series length Q = 5051 of Lighting2
dataset. Note that both curves decrease very fast so there are around 100 vari-
ables with average importance greater than 10−5. However after this point both
curves decrease slowly and 95% quantile is always much larger than the average



10 Eruhimov et al.

value. This means that there is a group of few variables that are consistently
important for all datasets and another group of variables (much larger than the
first one) that are important on few datasets and thus cannot be filtered for all
TSC problems. Also many datasets in UCR corpus have less than 50 samples
per class with time series length more than 100. This is another argument for
applying PFS to UCR corpus, recalling that PFS strong sides show themselves
on datasets with a small number of samples and a large number of features.

Dataset Number of train Number of GBT PFS DTW+1NN

samples features (uses whole train set)

Beef 30 6023 0.1233 0.1233 0.467
CBF 30 1113 0.0287 0.0012 0.004
Coffee 28 2462 0 0.1679 0.179
ECG200 50 740 0 0.151 0.12
FaceAll 50 2453 0.5303 0.5028 0.192
FaceFour 24 4420 0.0761 0.0455 0.114
Fish 50 5981 0.3411 0.256 0.160
GunPoint 50 1286 0.087 0.087 0.087
Lighting2 50 5051 0.1934 0.1508 0.131
Lighting7 50 5117 0.34 0.28 0.288
OliveOil 30 8080 0.1967 0.1867 0.167
OSULeaf 50 5765 0.5221 0.4505 0.384
SwedishLeaf 50 1667 0.4755 0.4118 0.157
SyntheticControl 50 875 0.061 0.0407 0.017
Trace 50 4045 0 0 0.01
TwoPatterns 50 1390 0 0 0.0015
Wafer 50 1292 0.0554 0.03902 0.005
Yoga 50 2882 0.4354 0.333 0.155

Table 2: Average test errors on UCR datasets.

18 datasets with the number of classes less than 30 were selected. For each
dataset we have learned 10 GBT and PFS models and compared the results as
described in the beginning of Section 4. The sizes of training and test datasets
are taken as in [20] unless stated otherwise. The results are summarized in Table
2. We have limited the training set size to 50 samples if it was larger. Bold values
show cases where the difference between two methods is statistically significant.
The last column shows the performance of 1NN with DTW measure, cited from
[20]. It is important to note that 1NN model uses the whole training set. PFS
has lower test error compared to GBT for 11 datasets and higher test error for 2
datasets. These two, Coffee and ECG200 have a very different distribution of
variable importance from the rest of TSC problems. GBT is able to find features
that help building extremely accurate model for these particular tasks. However



Transferring Knowledge by Prior Feature Sampling 11

100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Number of train samples

T
es

t e
rr

or

GBT
PFS

10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

Number of train samples

T
es

t e
rr

or

GBT
PFS

(a) (b)

Fig. 9: The dependence of test error on the training set size for UCR datasets: (a)
FaceAll, (b) GunPoint

for the most of the datasets PFS achieves dramatic improvement over GBT
model. Figures 9 (a-b) show the dependence of test error on the training set size
N for two datasets. Note that PFS is always superor to GBT when N is small
and regularization in the form of prior variable importance plays a significant
role. Each curve tends to a constant in the area where N is sufficiently large
and a small change in the number of training samples does not affect test error
much. However PFS test error converges to this constant faster than GBT, this
is more clear in Figure 9 (b).

5 Conclusion

We presented a transfer learning method that is based on sampling a subset of
variables for each tree split with probabilities proportional to the importance
of variables with regard to target prediction. Importance distribution was cal-
culated on other datasets with similar feature spaces and targets. The method
demonstrated a significant improvement in generalization error on a wide vari-
ety of datasets including Time Series Classification UCR corpus. We came to a
surprising conclusion: different TSC problems are like each other and the model,
trained on several TSC problems, can learn a new one with high accuracy from
extremely low number of samples (5-10 per class).

This investigation opens several directions for future work. The problem of
the optimal sampling weights even for a simple class of problems is still open.



12 Eruhimov et al.

Information such as the number of splits and, maybe, distribution of impurity
reduction over splits has to be taken into account. Prior knowledge about a
distribution function for each variable can be used to improve generalization
error. Finally, the algorithm can be generalized to handle variable interactions
so that sampling weights depend on the split one level up the tree.

References

1. Thrun, S.: Is learning the n-th thing any easier than learning the first? In Touret-
zky, D.S., Mozer, M.C., Hasselmo, M.E., eds.: Advances in Neural Information
Processing Systems. Volume 8., The MIT Press (1996) 640–646

2. Caruana, R.: Multitask learning. Machine Learning 28(1) (1997) 41–75
3. Baxter, J.: A bayesian/information theoretic model of learning to learn via multiple

task sampling. Machine Learning 28 (2007) 739
4. Thrun, S., Mitchell, T.M.: Learning one more thing. In: IJCAI. (1995) 1217–1225
5. Raina, R., Ng, A.Y., Koller, D.: Constructing informative priors using transfer

learning. (2006) 713 – 720
6. Friedman, J.: Greedy function approximation: a gradient boosting machine. Tech-

nical report, Dept. of Statistics, Stanford University (1999)
7. Friedman, J.: Stochastic gradient boosting. Technical report, Dept. of Statistics,

Stanford University (1999)
8. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression

Trees. Wadsworth, Belmont, MA (1984)
9. Borisov, A., Eruhimov, V., Tuv, E.: Dynamic soft feature selection for tree-based

ensembles. In Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L., eds.: Feature Extrac-
tion, Foundations and Applications. Springer, New York (2006)

10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learn-
ing and an application to boosting. In: European Conference on Computational
Learning Theory. (1995) 23–37

11. Breiman, L.: Random forests. Machine Learning 45(1) (2001) 5–32
12. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new

explanation for the effectiveness of voting methods. In: Proc. 14th International
Conference on Machine Learning, Morgan Kaufmann (1997) 322–330

13. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Advances
in Neural Information Processing Systems 19 (NIPS 06), Mit Press (2006)

14. LeCun, Y., Cortes, C.: The mnist dataset of handwritten digits
15. Keogh, E.: Data mining and machine learning in time series databases (2004)
16. Huang, Y., Yu, P.S.: Adaptive query processing for time-series data. In: In pro-

ceedings of the 5th Int’l Conference on Knowledge Discovery and Data Mining,
San Diego, CA (Aug 15-18 1999) 282–286

17. Geurts, P.: Pattern extraction for time series classification. In: In proceedings of the
5th European Conference on Principles of Data Mining and Knowledge Discovery,
Freiburg, Germany (Sep 3-7 2001) 115–127

18. to be added after review. (2007)
19. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series

classification using numerosity reduction. In: International Conference on Machine
Learning. (2006)

20. Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.A.: The ucr time series classifica-
tion/clustering homepage (2006)


