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Abstract. We propose a new method of estimating mutual informa-
tion from samples. Our method, called Least-Squares Mutual Informa-
tion (LSMI), has several attractive properties, e.g., density estimation is
not involved, an analytic-form solution is available, a variant of cross-
validation can be used for model selection, and an approximate leave-
one-out error can be computed very efficiently. Numerical experiments
show that LSMI compares favorably with existing methods in mutual in-
formation estimation and variable selection. The practical usefulness of
LSMI is demonstrated also in protein subcellular localization prediction.

Key words: Mutual information, Feature selection, Importance estima-
tion, Least squares cross validation.

1 Introduction

Detecting underlying dependencies between random variables x and y is highly
useful in various machine learning problems such as feature selection [1, 2], in-
dependent component analysis [3], and RNA structure prediction [4]. Although
classical correlation analysis would be still useful in these problems, it cannot
detect non-linear dependencies with no correlation. On the other hand, mutual
information (MI), which plays an important role in information theory [5], allows
us to detect general nonlinear dependencies. MI is defined by

I(X,Y ) :=

∫∫
pxy(x,y) log

(
pxy(x,y)

px(x)py(y)

)
dxdy, (1)

and it vanishes if and only if x and y are independent. For this reason, estimating
MI from samples has gathered a lot of attention for many years.
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A naive approach to estimating MI is to use a kernel density estimator
(KDE) [6, 7], i.e., the densities pxy(x,y), px(x), and py(y) are separately es-
timated from samples and the estimated densities are used for computing MI.
The band-width of the kernel functions could be optimized based on likelihood
cross-validation (LCV) [8], so there remains no open tuning parameter in this
approach. However, density estimation is known to be a hard problem and there-
fore the KDE-based method may not be so effective in practice.

An alternative method involves estimation of the entropies using k-nearest
neighbor (KNN) samples [9]. The KNN-based approach was shown to perform
better than KDE [10], given that the number k is chosen appropriately—a small
(large) k yields an estimator with small (large) bias and large (small) variance.
However, appropriately determining the value of k is not straightforward in the
context of MI estimation.

In this paper, we propose a new MI estimator that can overcome the lim-
itations of the existing approaches. Our method, which we call Least-Squares
Mutual Information (LSMI), does not involve density estimation and directly
models the density ratio:

w(x,y) :=
pxy(x,y)

px(x)py(y)
. (2)

The solution of LSMI can be computed by simply solving a system of linear equa-
tions. Therefore, LSMI is computationally very efficient. Furthermore, a variant
of cross-validation (CV) is available for model selection, so the values of tuning
parameters such as the regularization parameter and the kernel width can be
adaptively determined in an objective manner. We also show that an approxi-
mated leave-one-out CV (LOOCV) score can be computed very efficiently with-
out going through the hold-out loop. Numerical experiments show that LSMI
compares favorably with existing methods in MI estimation and variable selec-
tion.

2 A New MI Estimator

In this section, we formulate the MI inference problem as density ratio estimation
and propose a new method of estimating the density ratio.

2.1 MI Inference via Density Ratio Estimation

Let DX (⊂ R
dx) and DY (⊂ R

dy) be the data domains and suppose we are given
n independent and identically distributed (i.i.d.) paired samples {(xi,yi) | xi ∈
DX, yi ∈ DY}n

i=1 drawn from a joint distribution with density pxy(x,y). Let us
denote the marginal densities of xi and yi by px(x) and py(y), respectively. The
goal is to estimate MI defined by Eq.(1).

Our key constraint is that we want to avoid density estimation when estimat-
ing MI. To this end, we estimate the density ratio w(x,y) defined by Eq.(2) (see
also [11–13]). Given a density ratio estimator ŵ(x,y), MI can be simply esti-
mated by

Î(X,Y ) =
1

n

n∑

i=1

log ŵ(xi,yi).
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We model the density ratio function w(x,y) by the following linear model:

ŵα(x,y) := α⊤ϕ(x,y), (3)

where α = (α1, α2, . . . , αb)
⊤ are parameters to be learned from samples, ⊤ de-

notes the transpose of a matrix or a vector, and

ϕ(x,y) = (ϕ1(x,y), ϕ2(x,y), . . . , ϕb(x,y))⊤

are basis functions such that ϕ(x,y) ≥ 0b for all (x,y) ∈ DX ×DY. 0b denotes
the b-dimensional vector with all zeros. Note that ϕ(x,y) could be dependent
on the samples {xi,yi}n

i=1, i.e., kernel models are also allowed. We explain how
the basis functions ϕ(x,y) are chosen in Section 2.4.

2.2 A Least-squares Approach to Direct Density Ratio Estimation

We determine the parameter α in the model ŵα(x,y) so that the following
squared error J0 is minimized:

J0(α) :=
1

2

∫∫
(ŵα(x,y) − w(x,y))

2
px(x)py(y)dxdy

=
1

2

∫∫
ŵα(x,y)2px(x)py(y)dxdy −

∫∫
ŵα(x,y)pxy(x,y)dxdy + C,

where C = 1
2

∫∫
w(x,y)pxy(x,y)dxdy is a constant and therefore can be safely

ignored. Let us denote the first two terms by J :

J(α) := J0(α) − C =
1

2
α⊤Hα − h⊤α,

where H :=
∫∫

ϕ(x,y)ϕ(x,y)⊤px(x)py(y)dxdy, h :=
∫∫

ϕ(x,y)pxy(x,y)dxdy.
Approximating the expectations in H and h by empirical averages, we obtain

the following optimization problem:

α̃ := argmin
α∈Rb

[
1

2
α⊤Ĥα − ĥ⊤α + λα⊤α

]
, (4)

where we included a regularization term λα⊤α and

Ĥ :=
1

n2

n∑

i,j=1

ϕi,jϕ
⊤
i,j , ĥ :=

1

n

n∑

i=1

ϕi,i, ϕi,j := ϕ(xi,yj).

Differentiating the objective function (4) with respect to α and equating it to
zero, we can obtain an analytic-form solution:

α̃ = (Ĥ + λIb)
−1ĥ,

where Ib is the b-dimensional identity matrix.
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Since the importance function w(x,y) is non-negative by definition, we mod-
ify the solution as

α̂ := max(0b, α̃). (5)

We call the above method Least-Squares Mutual Information (LSMI) .
Thanks to the analytic-form solution of α̃, the LSMI solution α̂ can be com-

puted very efficiently. Furthermore, the solution α̂ tends to be sparse since we
rounded up negative elements to zero. This contributes to reducing the compu-
tation time in the test phase.

2.3 Convergence Bound

Here, we show a non-parametric convergence rate of the solution of the opti-
mization problem (4). Let G be a general set of functions on DX × DY. For a
function g (∈ G), let us consider a non-negative function I(g) such that

sup
x,y

[g(x,y)] ≤ I(g). (6)

Then the problem (4) can be generalized as

ŵ := argmin
g∈G


 1

2n2

n∑

i,j=1

g2
i,j −

1

n

n∑

i=1

gi,i + λnI(g)
2


 ,

where gi,j := g(xi,yj). We assume that the true density ratio function w(x,y)
is contained in model G and satisfies

w(x,y) < M0 for all (x,y) ∈ DX ×DY .

We also assume that there exists γ (0 < γ < 2) such that H[](GM , ǫ, L2(pXpY )) =
O((M/ǫ)γ), where GM := {g ∈ G | I(g) ≤ M} and H[] is the bracketing entropy
of GM with respect to the L2(pxpy)-norm [14, 15]. This means the function class
G is not too much complex. Then we have the following theorem.

Theorem 1. Under the above setting, if λn → 0 and λ−1
n = o(n2/(2+γ)) then

‖ŵ − w‖2 = Op(λ
1/2
n ), (7)

where ‖ · ‖2 means the L2(pxpy)-norm and Op denotes the asymptotic order in
probability.

Thus by choosing λn appropriately, the estimator ŵ converges to w with rate a
little bit slower than Op(n

−1/(2+γ)) (for example Op((n/ log n)−1/(2+γ))).

2.4 CV for Model Selection and Basis Function Design

The performance of LSMI depends on the choice of the model, i.e., the basis
functions ϕ(x,y) and the regularization parameter λ. Here we show that model
selection can be carried out based on a variant of CV.
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First, the samples {zi | zi = (xi,yi)}
n
i=1 are divided into R disjoint subsets

{Zr}
R
r=1. Then a density ratio estimator ŵr(x,y) is obtained using {Zj}j 6=r and

the cost J is approximated using the held-out samples Zr as

Ĵ (R−CV)
r =

∑

x′,y′∈Zr

ŵr(x
′,y′)2

2n2
r

−
∑

(x′,y′)∈Zr

ŵr(x
′,y′)

nr
,

where nr is the number of pairs in the set Zr.
∑

x′,y′∈Zr
is the summation

over all combinations of x′ and y′ (i.e., n2
r terms), while

∑
(x′,y′)∈Zr

is the

summation over all pairs (x′,y′) (i.e., nr terms). This procedure is repeated for

r = 1, 2, . . . , R and its average Ĵ (R−CV) is used as an estimate of J :

Ĵ (R−CV) =
1

R

R∑

r=1

Ĵ (R−CV)
r .

We can show that Ĵ (R−CV) is an almost unbiased estimate of the true cost
J , where the ‘almost’-ness comes from the fact that the number of samples is
reduced in the CV procedure due to data splitting [16].

A good model may be chosen by CV, given that a family of promising model
candidates is prepared. As model candidates, we propose using a Gaussian kernel
model: for z = (x⊤,y⊤)⊤,

ϕℓ(x,y) = exp

(
−
‖z − cℓ‖

2

2σ2

)
= exp

(
−
‖x − uℓ‖

2

2σ2

)
exp

(
−
‖y − vℓ‖

2

2σ2

)
,

where {cℓ | cℓ = (u⊤
ℓ ,v

⊤
ℓ )⊤}b

ℓ=1 are center points randomly chosen from
{zi | zi = (x⊤

i ,y
⊤
i )⊤}n

i=1.
In the experiments, we fix the number of basis functions at b = min(200, n),

and choose the Gaussian width σ and the regularization parameter λ by CV
with grid search.

2.5 Efficient Approximation of LOOCV

When R = n, the above CV is called leave-one-out CV (LOOCV). Thus in the
i-th each iteration, samples {(xi,yj)}

n
j=1 and {(xj ,yi)}

n
j=1 are held out from

the product of empirical marginal distributions and (xi,yi) is removed from the
empirical joint distribution.

To approximate the LOOCV score, let us consider an estimator α̂(i,j) ob-
tained by removing the sample (xi,yj) from the product of empirical marginal
distributions and removing the sample (xi,yi) from the empirical joint distribu-

tion: α̂(i,j) := max(0b, α̃
(i,j)), where α̃(i,j) :=

(
n2Ĥ−ϕi,jϕ⊤

i,j

n2−1 + λIb

)−1
nĥ−ϕi,i

n−1 .

Then the LOOCV score for this setting can be expressed as

Ĵ (LOOCV) =
1

n2

n∑

i,j=1

[
1

2

(
ϕ⊤

i,jα̂
(i,j)
)2

− ϕ⊤
i,iα̂

(i,j)

]
.
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Apply the well-known Woodbury formula to α̃(i,j), we have another expres-
sion:

α̃(i,j) =
n+ 1

n

(
a +

ϕ⊤
i,ja

n2 − a⊤
i,jϕi,j

ai,j

)
−
n+ 1

n2

(
ai,i +

ϕ⊤
i,jai,i

n2 − a⊤
i,jϕi,j

ai,j

)
,

where a := A−1ĥ, ai,j := A−1ϕi,j , A := Ĥ + λ(n2−1)
n2 Ib. This implies that an

inverse operation of a matrix appears only at A−1, which is common to all i and
j. Thus, when computing the approximate LOOCV score of LSMI, we do not
have to go through the hold-out loop, but we only need to invert the matrix A
once.

If we want to save the computation time, the n2 iterations in Ĵ (LOOCV) may
be reduced. Note that this does not affect the almost unbiasedness, though the
variance would be slightly increased. In our experiments, we only compute 5n

iterations when computing Ĵ (LOOCV).

3 Relation to Existing Methods

In this section, we discuss the characteristics of existing and proposed ap-
proaches.

3.1 Kernel Density Estimator (KDE)

KDE is a non-parametric technique to estimate a probability density function
p(x) from its i.i.d. samples {xi}

n
i=1. For the Gaussian kernel, KDE is expressed

as p̂(x) = 1
n(2πσ2)d/2

∑n
i=1 exp

(
−‖x−xi‖

2

2σ2

)
. The performance of KDE depends

on the choice of the kernel width σ and it can be optimized by likelihood CV
as follows [8]: First, divide the samples {xi}n

i=1 into R disjoint subsets {Xr}R
r=1.

Then obtain a density estimate p̂Xk
(x) from {Xr}r 6=k and compute its hold-

out log-likelihood for Xk: 1
|Xk|

∑
x∈Xk

log p̂Xk
(x). This procedure is repeated for

r = 1, 2, . . . , R and choose the value of σ such that the average of the hold-
out log-likelihood over all r is maximized. Note that the average hold-out log-
likelihood is an almost unbiased estimate of the Kullback-Leibler divergence from
p(x) to p̂(x), up to an irrelevant constant.

Based on KDE, MI can be approximated by separately estimating the den-
sities pxy(x,y), px(x) and py(y) using {xi,yi}

n
i=1. However, density estimation

is known to be a hard problem and therefore the KDE-based approach may not
be so effective in practice.

3.2 K-nearest Neighbor Method (KNN)

Let Nk(i) be the set of k-nearest neighbor samples of (xi,yi), and let ǫx(i) :=
max{‖xi − xi′‖ | (xi′ ,yi′) ∈ Nk(i)}, ǫy(i) := max{‖yi − yi′‖ | (xi′ ,yi′) ∈
Nk(i)}, nx(i) := #{zi′ | ‖xi−xi′‖ ≤ ǫx(i)}, ny(i) := #{zi′ | ‖yi−yi′‖ ≤ ǫy(i)}.

Then the KNN-based MI estimator is given as follows [9]: Î(X,Y ) = ψ(k) +
ψ(n) − 1

k − 1
n

∑n
i=1 [ψ(nx(i)) + ψ(ny(i))] , where ψ is the digamma function.
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Table 1. Relation between existing and proposed MI estimators. If the order of the
Edgeworth expansion is regarded a tuning parameter, model selection of EDGE should
be ‘Not available’.

Density estimation Model selection Distribution

KDE Involved Available Free

KNN Not involved Not available Free

EDGE Not involved Not necessary Nearly normal
LSMI Not involved Available Free

A practical drawback of the KNN-based approach is that the estimation
accuracy depends on the value of k and there seems no systematic strategy to
choose the value of k appropriately.

3.3 Edgeworth Expansion (EDGE)

MI can be expressed in terms of the entropies as I(X,Y ) = H(X) + H(Y ) −
H(X,Y ), where H(X) denotes the entropy of X. Thus MI can be approximated
if the entropies are estimated.

[17] proposed an entropy approximation method based on the Edgeworth
expansion, where the entropy of a distribution is approximated by that of the
normal distribution and some additional higher-order correction terms. More
specifically, for a d-dimensional distribution, the entropy is approximated by

H ≈ Hnormal−
1
12

∑d
i=1 κ

2
i,i,i−

1
4

∑d
i,j=1,i 6=j κ

2
i,i,j −

1
72

∑d
i,j,k=1,i<j<k κ

2
i,j,k, where

Hnormal is the entropy of the normal distribution with covariance matrix equal
to the target distribution and κi,j,k (1 ≤ i, j, k ≤ d) is the standardized third
cumulant of the target distribution. In practice, all the cumulants are estimated
from samples.

If the underlying distribution is close to the normal distribution, the above
approximation is quite accurate and the EDGE method works very well. How-
ever, if the distribution is far from the normal distribution, the approximation
error gets large and therefore the EDGE method may be unreliable.

In principle, it is possible to include the fourth and even higher cumulants
for further reducing the estimation bias. However, this in turn increases the esti-
mation variance; the expansion up to the third cumulants would be reasonable.

3.4 Discussions

The characteristics of the proposed and existing MI estimators are summarized
in Tab.1. KDE is distribution-free and model selection is possible by LCV. How-
ever, a hard task of density estimation is involved. KNN is distribution-free and
does not involve density estimation directly. However, there is no model selection
method for determining the number of nearest neighbors. EDGE does not in-
volve density estimation and any tuning parameters. However, it is based on the
assumption that the target distribution is close to normal. LSMI is distribution-
free, it does not involve density estimation, and model selection is possible by
(LOO)CV. Thus LSMI overcomes the limitations of the existing approaches.
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4 Numerical Experiments

In this section, we experimentally investigate the performance of the proposed
and existing MI estimators using artificial datasets.

Let us employ the following four datasets (see Fig.1).
(a) Linear dependence: y has a linear dependence on x as

x ∼ N (x; 0, 0.5) and y|x ∼ N (y; 3Mx, 1),

where N (x;µ, σ2) denotes the normal density with mean µ and variance σ2 and
M (∈ R) controls strength of the dependence between x and y.

(b) Non-linear dependence with correlation: y has a quadratic depen-
dence on x as

x ∼ N (x; 0, 1) and y|x ∼ N (y;x2, 2 −M).

(c) Non-linear dependence without correlation: y has a lattice-
structured dependence on x as

x ∼ U(x;−0.5, 0.5) and y|x ∼

{
N (x; 0,M ′) if x ≤ |16 |,
1
2N (x; 1,M ′) + 1

2N (x;−1,M ′) otherwise,

where U(x; a, b) denotes the uniform density on (a, b) and M ′ = (2 +M)−1.
(d) Independence: x and y are independent to each other as

x ∼ U(x; 0, 0.5) and y|x ∼ N (y; 0, 1).

4.1 MI Estimation Performance

The task is to estimate MI between x and y. We compare the performance of
LSMI(LOOCV), KDE(LCV), and KNN(k) for k = 1, 5, 15, where the approxi-

mation error of an MI estimate Î is measured by |Î − I|.
Fig.2 depicts the average approximation error over 100 trials as a function

of the sample size n when M = 1. For the linear dataset (a), the performance
of EDGE is the best among all. This is intuitively understandable since all
the distributions of x, y, and (x, y) are normal in this case and therefore the
Edgeworth approximation is exact (though the EDGE method is not exact since
the cumulants are estimated from samples). LSMI performs reasonably well. For
the quadratic dataset (b), LSMI outperforms all other estimators. For the dataset
(c), EDGE performs poorly since all the distributions are far from the normal
distribution. LSMI performs moderately well. For the independent dataset (d),
LSMI tends to be better than the others.

In the above simulation, KDE works moderately well for the dependent
datasets, but it performs poorly for the independent dataset. KNN works ex-
cellently given that the value of k is chosen optimally. Since the best value of
k varies depending on the datasets, it needs to be chosen adaptively using the
data samples. However, there is no systematic model selection strategy for KNN
and therefore KNN would be rather unreliable in practice. EDGE works well
for datasets with high normality, but its performance is poor for non-normal
datasets. In contrast, LSMI with LOOCV performs reasonably well for all the
datasets in a stable manner. Thus LSMI would be reliable.
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4.2 Variable Selection Performance

We apply the MI estimators to variable selection and investigate the perfor-
mance. We consider 5-dimensional input variables x = (x(1), x(2), . . . , x(5))⊤,
where each input variable x(i) (i = 1, 2, . . . , 5) independently follows the input
distribution (a). The output variable y follows the same conditional distribution
as (a), which is dependent only on the first input variable x(1). We choose the
most “informative” variable by finding the dimension x(i) with the largest MI es-
timate against y. Let us measure the error of variable selection by the frequency
of finding a wrong dimension (i.e., i 6= 1) over 50 trials. Thus, the error of the
random guess is 0.8 (= 1 − 1/5).

In addition to LSMI, KDE, EDGE, and KNN, we also test the Pearson corre-
lation coefficient (PCC) and the Hilbert-Schmidt independent criterion (HSIC)



10 Suzuki et al.

[18]. HSIC is a dependence measure based on kernelized correlation. The per-
formance of HSIC depends on the Gaussian kernel width; we use the median
distance between all pairs of samples as the kernel width, which is suggested as
a useful heuristic in [18].

Fig.3 depicts the average variable selection error over 50 trials as a function
of strength of the dependence M when n = 50; the larger the value of M is,
the stronger the dependence of y on x(1) is. In the same figure, we also included
the simulation results for the datasets (b) and (c). For the linear dataset (a),
LSMI, EDGE, PCC, and HSIC tend to perform better than KDE and KNN.
For the quadratic dataset (b), EDGE works the best and is followed by LSMI.
For the lattice-structured dataset (c), LSMI, KDE, and KNN perform well, but
EDGE, PCC, and HSIC perform poorly; their error is close to the random guess.
The failure of PCC is due to uncorrelatedness of the data. On the other hand,
the failure of HSIC is caused by an inappropriate choice of the Gaussian kernel
width, implying that the heuristic of using the median sample distance as the
kernel width is not always appropriate.

Overall, LSMI with LOOCV is shown to be a useful variable selection method
that performs stably well in various situations.

5 Protein Subcellular Localization Prediction

In this section, we apply the proposed method to a real-world biology problem.
The task is to predict protein subcellular localizations of yeast [19] based on

172 microarray data [20]. The 172 microarray data can be categorized into 37
groups depending on the type of stimulations. In this scenario, the use of feature
selection methods allows us not only to predict the localization of proteins, but
also to associate localized positions of activated proteins with stimulations.

Here we consider the forward feature-group addition strategy, i.e., a feature-
group score (such as an MI estimate, PCC, or HSIC) between each input feature-
group and output y is computed and the top m feature-groups are used for
training a classifier. Protein subcellular localizations in the cytoplasm and the
nucleus are predicted. We randomly choose 200 or 1000 genes (samples) from
totally 5520 genes for feature-group selection and training a classifier; the rest
is used for evaluating the generalization performance. We use a Gaussian kernel
support vector machine (GK-SVM) [16], where the kernel width is set at the
median distance among all samples and the regularization parameter is fixed at
C = 10.

Figure 4 depicts the mean classification error over 10 trials as a function of
the number of groups used for training a classifier. The results show that LSMI
performs quite well for all four cases. Fig.5 depicts the ranking of feature groups
obtained by LSMI when 1000 genes are used. This shows that the feature ranking
does not significantly change over trials, implying that feature selection by LSMI
is highly stable.

In cytoplasm location prediction, the feature groups 23 to 37 are frequently
chosen, which correspond to continuous carbon sources and temperatures. The
best classification accuracy is obtained when 4 feature groups are used (see
Fig.4(b)), so these feature groups would have a high correlation with protein
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Fig. 4. Classification error against the number of
feature groups for the yeast cell datasets. The leg-
ends are the same as Fig.3
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Fig. 5. The ranking of feature
groups when 1000 samples are
used. A brighter color means a
higher feature group ranking.

localization in the cytoplasm. On the other hand, in nucleus localization predic-
tion, the best classification accuracy is obtained with only one feature group (see
Fig.4(d)). Since the group 18 (nitrogen depletion) is the most frequently chosen,
this would be strongly correlated with protein localization in the nucleus.

6 Conclusions

In this paper, we proposed a new method of estimating mutual information. The
proposed method LSMI has several useful properties, e.g., it does not involve
density estimation, it is equipped with a cross-validation procedure for model
selection, and the solution as well as an approximate leave-one-out error can be
computed analytically. We showed the usefulness of LSMI through simulations
and biological data analysis.
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