An introduction to Web Mining part II

Ricardo Baeza-Yates, Aristides Gionis Yahoo! Research Barcelona, Spain & Santiago, Chile

ECML/PKDD 2008 Antwerp

- Statistical methods: the size of the web
- Content mining
- Link analysis for spam detection

- Issues
 - The web is really infinite
 - Dynamic content, e.g., calendar
 - Soft 404: <u>www.yahoo.com/anything</u> is a valid page
 - Static web contains syntactic duplication, mostly due to mirroring (~20-30%)
 - Some servers are seldom connected
- Who cares?
 - Media, and consequently the user
 - Engine design
 - Engine crawl policy. Impact on recall

- The relative size of search engines
 - The notion of a page being indexed is *still* reasonably well defined.
 - Already there are problems
 - Document extension: e.g. Google indexes pages not yet crawled by indexing anchor-text.
 - Document restriction: Some engines restrict what is indexed (first *n* words, only relevant words, etc.)
- The coverage of a search engine relative to another particular crawling process

• Thus:

s(A) / s(B) = Pr[A&B | B] / Pr[A&B | A]

- Need
 - Sampling a random page from the index of a SE
 - Checking if a page exists at the index of a SE

- Both tasks by using the public interface SEs
- Sampling:
 - Construct a large lexicon
 - Use the lexicon to fire random queries
 - Sample a page from the results
 - (introduces query and ranking biases)
- Checking:
 - Construct a *strong* query from the most k most distinctive terms of the page
 - (in order to deal with aliases, mirror pages, etc.)

- Total web = 11.5 B
- Union of major search engines = 9.5 B
- Common web = 2.7 B (Much higher correlation than before)

- [Bar-Yossef and Gurevich, WWW 2006]
- Define a graph on documents and queries:
 - Edge (d,q) indicates that document d is a result of a query q
- Random walk gives biased samples
- Bias depends on the degree of docs and queries
- Use Monte Carlo methods to unbias the samples and obtain uniform samples
- Paper shows how to obtain estimates of the degrees and weights needed for the unbiasing

• [Bar-Yossef and Gurevich, 2006]

Google = 1 Yahoo! = 1.28 MSN Search = 0.73

- Duplicate and near-duplicate document detection
- Content-based spam detection

- Duplication: Exact match with fingerprints
- Near-Duplication: Approximate match
 - Overview
 - Compute syntactic similarity with an edit-distance measure
 - Use similarity threshold to detect near-duplicates
 - E.g., Similarity > 80% => Documents are "near duplicates"
 - Not transitive though sometimes used transitively

- Features:
 - Segments of a document (natural or artificial breakpoints) [Brin95]
 - Shingles (Word N-Grams) [Brin95, Brod98]

```
"a rose is a rose is a rose" =>
```

```
a_rose_is_a
```

```
rose_is_a_rose
```

```
is_a_rose_is
```

are all added in the bag of word representation

- Similarity Measure
 - TFIDF [Shiv95]
 - Set intersection [Brod98]
 - (Specifically, Size_of_Intersection / Size_of_Union)

- Consider documents *a* and *b*
- Are represented by bag of words A and B, resp.
- Then:

J(*a*,*b*) = |*A* intersect *B*| / | *A* union *B*|

•Computing exact Jaccard coefficient between all pairs of documents is expensive (quadratic)

- •Approximate similarities using a cleverly chosen subset of shingles from each (a *sketch*)
- Idea based on hashing
- •Also known as locality-sensitive hashing (LSH)
 - A family of hash functions for which items that are similar have higher probability of colliding

- Estimate size_of_intersection / size_of_union based on a short sketch ([Broder 97, Broder 98])
 - Create a "sketch vector" (e.g., of size 200) for each document
 - Documents which share more than t (say 80%) corresponding vector elements are similar
 - For doc D, sketch[i] is computed as follows:
 - Let f map all shingles in the universe to 0..2^m (e.g., f = fingerprinting)
 - Let π_i be a specific random permutation on 0..2^m
 - Pick MIN $\pi_i(f(s))$ over all shingles s in D

 \frown \frown 2^{64} Start with 64 bit shingles Permute on the number line

 $\rightarrow 2^{64}$ Pick the min value

Test for 200 random permutations: $\pi_1, \pi_2, \dots, \pi_{200}$

A = B iff the shingle with the MIN value in the union of Doc1 and Doc2 is common to both (I.e., lies in the intersection)

```
This happens with probability:
Size_of_intersection / Size_of_union
```


- Mirroring is systematic replication of web pages across hosts.
 - Single largest cause of duplication on the web
- Host1/ α and Host2/ β are mirrors iff

For all (or most) paths p such that when

http://Host1/ α / p exists

http://Host2/ β /p exists as well

- with identical (or near identical) content, and vice versa.
- E.g.,
 - http://www.elsevier.com/ and http://www.elsevier.nl/
 - Structural Classification of Proteins
 - http://scop.mrc-lmb.cam.ac.uk/scop
 - http://scop.berkeley.edu/
 - http://scop.wehi.edu.au/scop
 - http://pdb.weizmann.ac.il/scop
 - http://scop.protres.ru/

Auctions.msn.com

Auctions.lycos.com

· · · ·				4		•	-
A Location: http://auctions.msn.com/HTML/Cat17065/Page1.htm?CatNo=9			🛛 🦋 🖁 Bookr	marks 🛛 🙏 Location: http://auctions.lyco	s.com/HTML/Cat8835	/Page1.htm?CatNo=	
Antiques select parameters below to search antiques listings. sort by pick merchant	Choose pric	ce 💽 sort	gal	Antiques Featured	Items		CLICK
Search	C T	an't find it ry the <u>Auc</u>	? tion Ager		<u>~Flow Blue Cake Plate With</u> <u>Pedestal~Gorgeous!!!</u> -	Current Bid: \$50.00	Auction Ends 8/18/01 11:00 PM
Narrow Your Search	15 16 17	18 Next>		1	<u>~Flow Blue Taureen With Sou</u> <u>Spoon~Gorgeous~ All</u> <u>Porcelain~*</u> -	Durrent Bid: \$55.00	Auction Ends 8/18/01 10:40 PM
				22			Auction Ends
Title	Status	Bids	Price		Vintage Swiss Silver Case	Current Bid:	8/18/01
<u>~Flow Blue Cake Plate With Pedestal~Gorgeous!!!</u>	o A	5	\$50.00	00+2	Pocket Watch by Remontoir	\$30.00	1:00 AM
<u>~Flow Blue Taureen With Soup Spoon~Gorgeous~</u> <u>All Porcelain~*</u>	0 R	з	\$55.00		-		
<u>Vintage Swiss Silver Case Pocket Watch by</u> <u>Remontoir</u>	0 R	1	\$30.00		One Nina & Three Rara Kuyu Paintings	Current Bid:	Auction Ends 8/17/01 11:00 PM
<u>One Nina & Three Rara Kuyu Paintings</u>	🗙 🖸 📩	-	\$20.00			\$20.00	
052150502 / GORGEOUS HANDICRAFT TEAKWOOD ELEPHANT NCS152	o 🗛	-	\$75.98		Db2150502 / GORGEOUS HANDICRAFT TEAKWOOD ELEPHANT NCS152	Comment pit	Auction Ends 8/18/01 1:00 AM
052151103 / BEAUTIFUL HAND MADE TEAKWOOD ELEPHANT NCS152	o 🗚	-	\$75.98			Current Bid: \$75.98	
					-		

An introduction to Web Mining, ECML/PKDD 2008, Antwerp

Aug 2001

- Why detect mirrors?
 - Smart crawling
 - Fetch from the fastest or freshest server
 - Avoid duplication
 - Better connectivity analysis
 - Combine inlinks
 - Avoid double counting outlinks
 - Redundancy in result listings
 - "If that fails you can try: <mirror>/samepath"
 - Proxy caching

Study genealogy of the Web

- [Baeza-Yates et al., 2008]
- New pages copy content from existing pages
- Web genealogy study:
 - How textual content of source pages (parents) are reused to compose part of new Web pages (children)
 - Not near-duplicates, as similarities of short passages are also identified
- How can search engines benefit?
 - By associating more relevance to a parent page?
 - By trying to decrease the bias?

Machine-learning approach --- training

Machine-learning approach --- prediction

- Label "spam" nodes on the host level
 - agrees with existing granularity of Web spam
- Based on a crawl of .uk domain from May 2006
- 77.9 million pages
- 3 billion links
- 11,400 hosts

- 20+ volunteers tagged a subset of host
- Labels are "spam", "normal", "borderline"
- Hosts such as .gov.uk are considered "normal"
- In total 2,725 hosts were labelled by at least two judges
- hosts in which both judges agreed, and "borderline" removed
- Dataset available at

http://www.yr-bcn.es/webspam/

- Number of words in the page
- Number of words in the title
- Average word length
- Fraction of anchor text
- Fraction of visible text

See also [Ntoulas et al., 06]

- Let T = { (w₁, p₁), ..., (w_k, p_k) } the set of trigrams in a page, where trigram w_i has frequency p_i
- Features:
- Entropy of trigrams: $H = -Sum_i p_i \log(p_i)$
- Independent trigram likelihood: (1/k) Sum_i log(p_i)
- Also, compression rate, as measured by bzip

- *F* set of most frequent terms in the collection
- Q set of most frequent terms in a query log
- P set of terms in a page
- Features:
- Corpus "precision"
- Corpus "recall"
- Query "precision"
- ✓ Query "recall"

| P intersect F | / | P |

- | P intersect F | / | F |
- | P intersect Q | / | P |
- | P intersect Q | / | Q |

compression rate --- home

- C4.5 decision tree with bagging and cost weighting for class imbalance
- With content-based features achieves:
 - True positive rate: 64.9%
 - False positive rate: 3.7%
 - F-Measure: 0.683

• Link-based spam detection

- Link farms used by spammers to raise popularity of spam pages
- Link farms and other spam strategies leave traces on the structure of the web graph
- Dependencies between neighbouring nodes of the web graph are created
- Naturally, spammers try to remove traces and dependencies

- Single-level link farms can be detected by searching for nodes sharing their out-links
- In practice more sophisticated techniques are used

- in-degree
- out-degree
- edge reciprocity
 - number of reciprocal links
- assortativity
 - degree over average degree of neighbors

- PageRank
- indegree/PageRank
- outdegree/PageRank
- .
- Truncated PageRank [Becchetti et al., 2006]
 - A variant of PageRank that diminishes the influence of a page the PageRank score of its neighbors
- TrustRank [Gyongyi et al., 2004]
 - As PageRank but with teleportation at Open Directory pages

- Let x and y be two nodes in the graph
- Say that y is a d-supporter of x, if the shortest path from y to x has length at most d
- Let $N_d(x)$ be the set of the *d*-supporters of x
- Define bottleneck number of *x*, up to distance *d* as

$$b_d(x) = min_{j \le d} N_j(x)/N_{j-1}(x)$$

minimum rate of growth of the neighbors of x up to a certain distance

- How to compute the supporters?
- Utilize neighborhood function $N(h) = | \{ (u,v) | d(u,v) \le h \} | = \blacktriangleleft_u N(u,h)$
- and ANF algorithm [Palmer et al., 2002]
- Probabilistic counting úsing Flajolet-Martin sketches or other data-stream technology
- Can be done with a few passes and exchange of sketches, instead of executing BFS from each node

• C4.5 decision tree with bagging and cost weighting for class imbalance

Content	Link	Both
64.9%	79.4%	78.7%
3.7%	9.0%	5.7%
0.683	0.659	0.723
	Content 64.9% 3.7% 0.683	ContentLink64.9%79.4%3.7%9.0%0.6830.659

Spam nodes in out-links

Spam nodes from in-links

- Use a dataset with labeled nodes
- Extract content-based and link-based features
- Learn a classifier for predicting spam nodes independently
- Exploit the graph topology to improve classification
 - Clustering
 - Propagation
 - Stacked learning

- Let G=(V,E,w) be the host graph
- Cluster G into m disjoint clusters C_1, \dots, C_m
- Compute p(C_i), the fraction of nodes classified as spam in cluster C_i
 - if $p(C_i) > t_u$ label all as spam
 - if $p(C_i) < t_i$ label all as non-spam
- A small improvement:

	Baseline	Clustering
True positive rate:	78.7%	76.9%
False positive rate:	5.7%	5.0%
F-Measure:	0.723	0.728

Exploiting dependencies Propagation

- Perform a random walk on thegraph
- With probability a follow a link
- With prob 1-a jump to a random node labeled spam
- Relabel as spam every node whose stationary distribution component is higher than a threshold
- Improvement:

	Baseline	Propagation
True positive rate:	78.7%	75.0%
False positive rate:	5.7%	4.3%
F-Measure:	0.723	0.733

Exploiting dependencies Stacked learning

- Meta-learning scheme [Cohen and Kou, 2006]
- Derive initial predictions
- Generate an additional attribute for each object by combining predictions on neighbors in the graph
- Append additional attribute in the data and retrain
- Let *p(h)* be the prediction of a classification algorithm for *h*
- Let *N*(*h*) be the set of pages related to *h*
- Compute:

$$f(h) = Sum_{g \text{ in } N(h)} p(g) / |N(h)|$$

• Add *f*(*h*) as an extra feature for instance *h* and retrain

Exploiting dependencies Stacked learning

• First pass:

	Baseline	in	out	both
True positive rate:	78.7%	84.4%	78.3%	85.2%
False positive rate:	5.7%	6.7%	4.8%	6.1%
F-Measure:	0.723	0.733	0.742	0.750

• Second pass:

	Baseline	1 st pass	2 nd pass
True positive rate:	78.7%	85.2%	88.2%
False positive rate:	5.7%	6.1%	6.3%
F-Measure:	0.723	0.750	0.763

- Open problems and challenges:
 - Modeling web graph and other web data
 - Model evolution
 - Data cleaning and anonymization
 - Improve IR relevance
 - Manage and integrate highly heterogeneous information: content, links, social links, tags, feedback, usage logs, wisdom of crowd, etc.
 - Design improved web applications
 - Battle adversarial attempts and collusions

- Carlos Castillo
- Alessandro Tiberi
- Barbara Poblete
- Alvaro Pereira

WWW2008 Beijing