Regularization frontier in machine learning

G. Gasso

LITIS FA 4108 INSA de Rouen, France

ECML PKDD 2008

September 17, 2008

Antwerp, Belgium

Gasso (LITIS, EA 4108)

Regularization path and machine learning Antwerp, 19/09/2008

Introduction

- Framework
- Model selection

Regularization path and pareto frontier

- Efficient regularization path running
 - Piecewise linear regularization path
- Two examples of regularization path
 - Lasso path
 - SVM path
- 5 Regularization path and sparsity
 - Extensions and efficiency evaluation

Framework

• Set of data
$$\mathcal{D} = \{x_i, y_i\}_{i=1, \cdots, n}$$
 with $(x, y) \in \mathcal{X} \times \mathcal{Y}$

 $(X,Y) \sim P_{X,Y}$ with $P_{X,Y}$ the unknown joint distribution

Supervised learning

- Binary classification $\mathcal{Y} = \{-1, +1\}$
- Regression $\mathcal{Y} = \mathbb{R}$

• Task : find a predictive model f

$$f: \mathcal{X} \to \mathcal{Y}$$

 $x \mapsto \hat{y} = f(x)$

• f belongs to an hypothesis space $\mathcal H$

Gasso (LITIS, EA 4108)

Antwerp, 19/09/2008 3 / 43

Learning problem

Framework (ct'd)

- \bullet A non-negative loss function ℓ
- Expected risk minimization $f^* = \operatorname{argmin}_{f \in \mathcal{H}} E_{X,Y}(\ell(f(X), Y))$
- Empirical loss minimization

$$\hat{f} = \operatorname{argmin}_{f \in \mathcal{H}} L(f)$$

with $L(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i))$

- To avoid overtraining, some constraints (smoothness, sparsity, robustness, ...) are enforced on f by using a penalty term P(f)
- Regularized optimization problem

$$\hat{f} = \operatorname{argmin}_{f \in \mathcal{H}} L(f) + \lambda P(f)$$

 $\lambda \in \mathbb{R}^+$ is a trade-off or regularization parameter

Tuning of λ

Identify the appropriate value λ^\star associated to the best solution \hat{f}^\star

Illustration : non linear ridge regression

Gasso (LITIS, EA 4108)

Regularization path and machine learning

Antwerp, 19/09/2008

- Compute the decision function \hat{f}_{λ} for different values of λ
- Select the best solution according to some generalization performance

- Compute the decision function \hat{f}_λ for different values of λ
- Select the best solution according to some generalization performance

Two approaches

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 6 / 43

- Compute the decision function \hat{f}_{λ} for different values of λ
- Select the best solution according to some generalization performance

Two approaches

• Grid search over predefined set $\{\lambda_1, \ldots, \lambda_K\}$

Values specified by the user

• Retained solution $\hat{f}^{\star}(x)$ depends highly on the grid resolution

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008

- Compute the decision function \hat{f}_{λ} for different values of λ
- Select the best solution according to some generalization performance

Two approaches

- Grid search over predefined set $\{\lambda_1, \ldots, \lambda_K\}$
- Ompute the regularization path
 - No values specified by the user
 - Find automatically all solutions $\hat{f}(x)$

Regularization path

The set of all solutions $\hat{f}_{\lambda}(x)$ i.e. $\mathcal{R} = \left\{ \hat{f}_{\lambda}(x) \mid \lambda \in [0, \infty[\right\} \right\}$

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp,

Introduction

2 Regularization path and pareto frontier

3 Efficient regularization path running

Two examples of regularization path

5 Regularization path and sparsity

Extensions and efficiency evaluation

Linear ridge regression

- Model : $f(x) = x^{\top} \beta$ with $\beta \in \mathbb{R}^d$
- Problem :

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|^2 + \lambda \| \boldsymbol{\beta} \|^2$$

• Solution
$$: \hat{oldsymbol{eta}}(\lambda) = \left(\mathbf{X}^{ op} \mathbf{X} + \lambda \mid I
ight)^{-1} \mathbf{X}^{ op} \mathbf{y}$$

I : identity matrix

Regularization path

•
$$\mathcal{R} = \left\{ \hat{\boldsymbol{\beta}}(\lambda) \mid \lambda \in [0, \infty[\right\}$$

• $\lambda = 0, \ \hat{\boldsymbol{\beta}}_{LS} = \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \mathbf{y}$ (least squares solution)
• $\lambda \to \infty, \ \hat{\boldsymbol{\beta}} = \mathbf{0}$

Gasso (LITIS, EA 4108)

Regularization path and machine learning

Antwerp, 19/09/2008

1D linear regression path

Gasso (LITIS, EA 4108)

Regularization path and machine learning Antwerp, 19/09/2008

Notion of Dominance and Pareto frontier

$$\begin{cases} L(\boldsymbol{\beta}) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2\\ P(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|^2 \end{cases}$$

Dominance

A vector β_1 dominates another vector β_2 if $L(\beta_1) \leq L(\beta_2)$ and $P(\beta_1) \leq P(\beta_2)$

Pareto frontier

Pareto frontier is the set of all non dominated solutions Fig.: dominated point (red), non dominated point (purple) and Pareto frontier (blue).

Pareto frontier \Leftrightarrow Reg. path

Gasso (LITIS, EA 4108)

Regularization path and machine learning

Antwerp, 19/09/2008

It works for CONVEX criteria !

Formulation 1 : linear

combination of L and P

 $\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 11 / 43

It works for CONVEX criteria !

Formulation 1

$$\min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda \|\beta\|^2$$

Formulation 2

$$\begin{cases} \min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2\\ \text{s.t.} \|\boldsymbol{\beta}\|^2 \leq C \end{cases}$$

It works for CONVEX criteria !

Formulation 1

$$\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

Formulation 2

$$\left\{ \begin{array}{l} \min_{\boldsymbol{\beta}} \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|^2 \\ \text{s.t.} \ \| \boldsymbol{\beta} \|^2 \leq C \end{array} \right.$$

Formulation 3

$$\begin{cases} \min_{\boldsymbol{\beta}} \|\boldsymbol{\beta}\|^2\\ \text{s.t.} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 \leq C' \end{cases}$$

The importance of convexity

- learning is a multi objective problem
- the regularization path is the Pareto frontier
- beware the non convex case
- it works for more than 2 criteria

What for ?

To tune (efficiently) the regularization parameter λ

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 13 / 43

Introduction

Regularization path and pareto frontier

Efficient regularization path running

Two examples of regularization path

5 Regularization path and sparsity

Extensions and efficiency evaluation

Ridge regression example $\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$

Ridge regression example $\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^{2^{||\boldsymbol{\beta}||}}$

 $\mathcal{O}(Kd^3)$

Grid Search

 $\begin{array}{l} \text{for each } \lambda_1 < \lambda_2 < \ldots < \lambda_t < \ldots < \lambda_K \\ \text{compute } \boldsymbol{\beta}_t = (\mathbf{X}^\top \mathbf{X} + \lambda_t \mathbf{I})^{-1} \ \mathbf{X}^\top \mathbf{y} \ , \quad t = 1, \cdots, K \end{array}$

Ridge regression example $\min_{\beta \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda \|\beta\|^2$

Grid Search

$$\begin{array}{l} \text{for each } \lambda_1 < \lambda_2 < \ldots < \lambda_t < \ldots < \lambda_K \\ \text{compute } \boldsymbol{\beta}_t = (\mathbf{X}^\top \mathbf{X} + \lambda_t I)^{-1} \ \mathbf{X}^\top \mathbf{y} \ , \quad t = 1, \cdots, K \end{array}$$

Warm start

 $oldsymbol{eta}_t = \Phi(oldsymbol{eta}_{t-1})$ (using ℓ conjugate gradient iterations)

 $\mathcal{O}(K\ell d^2)$

 $\mathcal{O}\left(Kd^{3}\right)$

Olitis

Grid Search

 $\begin{array}{l} \text{for each } \lambda_1 < \lambda_2 < \ldots < \lambda_t < \ldots < \lambda_K \\ \text{compute } \boldsymbol{\beta}_t = (\mathbf{X}^\top \mathbf{X} + \lambda_t I)^{-1} \ \mathbf{X}^\top \mathbf{y} \ , \quad t = 1, \cdots, K \end{array}$

Warm start

 $m{eta}_t = \Phi(m{eta}_{t-1})$ (using ℓ conjugate gradient iterations)

 $\mathcal{O}(K\ell d^2)$

• Warm start + prediction step

 $\beta_t^{(p)} = \beta_{t-1} + \rho \nabla_\beta (L(\beta_{t-1}) + \lambda_t P(\beta_{t-1}))$ (prediction step) $\beta_t = \Phi(\beta_t^{(p)})$ (correction step using conjugate gradient)

 $\mathcal{O}(K\ell'd^2)$

litis

Ridge regression example min
$$_{oldsymbol{eta}\in\mathbb{R}^d}\|\mathbf{y}-\mathbf{X}oldsymbol{eta}\|^2+~\lambda~\|oldsymbol{eta}\|^{2^{ extsf{6}}}$$

Grid Search

$$\begin{array}{l} \text{for each } \lambda_1 < \lambda_2 < \ldots < \lambda_t < \ldots < \lambda_K \\ \text{compute } \boldsymbol{\beta}_t = (\mathbf{X}^\top \mathbf{X} + \lambda_t I)^{-1} \ \mathbf{X}^\top \mathbf{y} \,, \quad t = 1, \cdots, K \end{array}$$

Warm start

 $oldsymbol{eta}_t = \Phi(oldsymbol{eta}_{t-1})$ (using ℓ conjugate gradient iterations)

 $\mathcal{O}(K\ell d^2)$

• Warm start + prediction step

$$\begin{split} \beta_t^{(p)} &= \beta_{t-1} + \rho \nabla_{\beta} (L(\beta_{t-1}) + \lambda_t P(\beta_{t-1})) \quad (\text{prediction step}) \\ \beta_t &= \Phi(\beta_t^{(p)}) \quad (\text{correction step using conjugate gradient}) \end{split}$$

$$\mathcal{O}(K\ell'd^2)$$

 $\mathcal{O}(Kd^2)$

• Use only the prediction step !

 $\beta_t = \beta_{t-1} + \lambda_t \Psi(\beta_{t-1})$ (prediction step) to do so the regularization path has to be piecewise linear

How to choose L and P to get linear reg. path?

Solution path is linear ⇔ one cost is piecewise quadratic and the other one piecewise linear

convex case [Rosset & Zhu, 07]

$$\begin{split} \min_{\boldsymbol{\beta} \in \mathbb{R}^{d}} L(\boldsymbol{\beta}) + \lambda P(\boldsymbol{\beta}) \\ \bullet \quad \text{Piecewise linearity} : \lim_{\varepsilon \to 0} \frac{\boldsymbol{\beta}(\lambda + \varepsilon) - \boldsymbol{\beta}(\lambda)}{\varepsilon} = \text{constant} \\ \bullet \quad \text{Optimality} \quad \quad \nabla L(\boldsymbol{\beta}(\lambda)) + \lambda \nabla P(\boldsymbol{\beta}(\lambda)) = 0 \\ \nabla L(\boldsymbol{\beta}(\lambda + \varepsilon)) + (\lambda + \varepsilon) \nabla P(\boldsymbol{\beta}(\lambda + \varepsilon)) = 0 \end{split}$$

Use Taylor expansion

$$\lim_{\varepsilon \to 0} \frac{\beta(\lambda + \varepsilon) - \beta(\lambda)}{\varepsilon} = \left[\nabla^2 L(\beta(\lambda)) + \lambda \nabla^2 P(\beta(\lambda))\right]^{-1} \nabla P(\beta(\lambda))$$

 $\overline{
abla^2 L(oldsymbol{eta}(\lambda))} = ext{constant}$ and $\overline{
abla^2 P(oldsymbol{eta}(\lambda))} = 0$

Gasso (LITIS, EA 4108)

ſ	L	Ρ	regression	classification	clustering
ſ	L_2	L_1	Lasso/LARS	L1 L2 SVM	
	L_1	L_2	SVR	SVM	OC SVM
	L_1	L_1	L1 least	L1 SVM	
			absolute deviation		

Tab.: example of piecewise linear regularization path algorithms.

$$P: L_{p} = \sum_{j=1}^{d} |\beta_{j}|^{p} \qquad L: L_{p}: |f(x) - y|^{p} \text{ hinge } (yf(x) - 1)_{+}^{p}$$

$$\varepsilon \text{-insensitive} \qquad \begin{cases} 0 & \text{if } |f(x) - y| < \varepsilon \\ |f(x) - y| - \varepsilon & \text{otherwise} \end{cases}$$

Huber's loss:
$$\begin{cases} |f(x) - y|^{2} & \text{if } |f(x) - y| < t \\ 2t|f(x) - y| - t^{2} & \text{otherwise} \end{cases}$$

Gasso (LITIS, EA 4108)

Examples of Loss and Penalty

Piecewise regularization path

the problem

 $\mathsf{min}_{\boldsymbol{\beta} \in \mathbb{R}^d} \ L(\boldsymbol{\beta}) + \lambda P(\boldsymbol{\beta}) \quad \Leftrightarrow \quad \{\boldsymbol{\beta}(\lambda) \mid \lambda \in [0,\infty]\}$

efficient computation

 \implies piecewise linearity

$$\boldsymbol{\beta}_{t+1} = \boldsymbol{\beta}_t + (\lambda_{t+1} - \lambda_t) \mathbf{w}$$

piecewise linearity

 \implies either *L* or *P* is *L*₁ type

A B A A B A

3

Gasso (LITIS, EA 4108) Regularization path and

Regularization path and machine learning Antwerp, 19/09/2008 19 / 43

An old result revisited

- Portfolio management (Markovitz, 1952)
 - Gain *vs.* risk

• efficiency frontier : piecewise linearity (Critical path Algo.)

• Sensitivity analysis (Heller, 1954) I. HELLER (1954) Sensitivity analysis in linear programming. L.R.P. Seminar, The George Washington University, Logistics Research Project, January 1954.

$$\begin{array}{l} \left(\begin{array}{c} \min_{\boldsymbol{\beta}} & \frac{1}{2} \boldsymbol{\beta}^\top \boldsymbol{Q} \boldsymbol{\beta} + (\mathbf{c} + \lambda \; \Delta \mathbf{c})^\top \boldsymbol{\beta} \\ \text{avec} & \boldsymbol{A} \boldsymbol{\beta} = \mathbf{b} + \mu \; \Delta \mathbf{b} \end{array} \right)$$

- Parametric programming (Gal 1968)
 - Parametric Linear Programming is piecewise linear
 - PQP piecewise quadratic
 - multiparametric programming...

Gasso (LITIS, EA 4108)

2008 20

Introduction

2 Regularization path and pareto frontier

3 Efficient regularization path running

Two examples of regularization path

5 Regularization path and sparsity

Extensions and efficiency evaluation

Lasso (Basis pursuit) problem

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i=1}^d |\boldsymbol{\beta}_i| \iff \begin{cases} \min_{\boldsymbol{\beta} \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 \\ \text{with} & \sum_{i=1}^d |\boldsymbol{\beta}_i| \leq C \end{cases}$$

• Assume variables $x_j, j = 1, \cdots, d$ and y are centered and normalized

2D-Lasso

small C leads to $\beta_1 = \beta_2 = 0$

high C produces the least squares solution

e learning Antwerp, 19/09/2008 22 / 43

글 🕨 🖂 글

$$\min_{\boldsymbol{\beta}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i=1}^d |\beta_i|$$

Optimality condition for variable
$$x_j$$

$$-\underbrace{x_j^{\top}(\mathbf{X}\beta - \mathbf{y})}_{correlation} + \lambda \ \partial(|\beta_j|) = 0$$
with

$$\partial(|\beta|) = \begin{cases} \operatorname{sign}(\beta) & \text{if } \beta \neq 0\\ \alpha_j \in] - 1, 1[& \text{if } \beta_j = 0 \end{cases}$$

$$\min_{\boldsymbol{\beta}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i=1}^{n} |\beta_i|$$

d

Active set : $I_{\beta} = \{\beta_j \mid \beta_j \neq 0\}$ and Inactive set $I_0 = \{\beta_j \mid \beta_j = 0\}$

$$\underbrace{|\mathbf{x}_{j}^{\top}(\mathbf{X}\boldsymbol{\beta}-\mathbf{y})|}_{correlation} = \lambda, \quad \beta_{j} \in I_{\beta} \quad \text{and} \quad \underbrace{|\mathbf{x}_{j}^{\top}(\mathbf{X}\boldsymbol{\beta}-\mathbf{y})|}_{correlation} < \lambda, \quad \beta_{j} \in I_{0}$$

Gasso (LITIS, EA 4108)

$$\min_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i=1}^{d} |\beta_i|$$

• Let
$$oldsymbol{eta}_eta=oldsymbol{eta}(I_eta)$$
 and $X=X(:,I_eta)$

• optimality conditions become

$$- \mathbf{X}_eta^ op (\mathbf{X}_etaoldsymbol{eta}_eta - \mathbf{y}) + \lambda \; ext{sign}(oldsymbol{eta}_eta) = \mathbf{0}$$

• Let
$$eta_eta=eta(I_eta)$$
 and $X=X(:,I_eta)$

optimality conditions become

$$-\mathbf{X}_{eta}^{ op}(\mathbf{X}_{eta}oldsymbol{eta}_{eta}-\mathbf{y})+\lambda \operatorname{sign}(oldsymbol{eta}_{eta})=0$$

- For λ_t , assume the solution β_{β}^t and the corresponding set I_{β}^t
- Assume $\lambda = \lambda_t + \gamma$ such as I_{β}^t and sign (β_{β}^t) remain unchanged

$$\begin{array}{lll} \mathbf{X}_{\beta}^{\top}(\mathbf{X}_{\beta}\boldsymbol{\beta}_{\beta}^{t}-\mathbf{y}) &=& \lambda_{t}\,\operatorname{sign}(\boldsymbol{\beta}_{\beta})\\ \mathbf{X}_{\beta}^{\top}(\mathbf{X}_{\beta}\boldsymbol{\beta}_{\beta}-\mathbf{y}) &=& \lambda\,\operatorname{sign}(\boldsymbol{\beta}_{\beta}) \end{array}$$

$$\mathbf{X}_{\beta}^{\top}\mathbf{X}_{\beta}(\boldsymbol{eta}_{eta}-\boldsymbol{eta}_{eta}^{t}) = (\lambda-\lambda_{t})\operatorname{sign}(\boldsymbol{eta}_{eta})$$

$$\boldsymbol{\beta}_{\beta} = \boldsymbol{\beta}_{\beta}^{t} + (\lambda - \lambda_{t}) \mathbf{w} = \boldsymbol{\beta}_{\beta}^{t} + \gamma \mathbf{w}$$

Descent direction $\mathbf{w} = (\mathbf{X}_{\beta}^{\top} \mathbf{X}_{\beta})^{-1} \operatorname{sign}(\boldsymbol{\beta}_{\beta})$

Gasso (LITIS, EA 4108)

Regularization path and machine learning

$$\boldsymbol{\beta}_{\beta} = \boldsymbol{\beta}_{\beta}^{t} + \gamma \mathbf{w}$$

The linear variation holds until the set I^t_{eta} changes \Longrightarrow detect events

Event detection

• $eta_\ell \in I_eta$ moves to I_0

Compute the step size γ such as $0 = \beta_{\ell}^{t} + \gamma \mathbf{w}_{j}$

•
$$\beta_j \in I_0$$
 moves to I_β
Recall $|\mathbf{x}_\ell^\top (\mathbf{X}_\beta \boldsymbol{\beta}_\beta - \mathbf{y})| = \lambda$, $\beta_\ell \in I_\beta$ and $|\mathbf{x}_j^\top (\mathbf{X}_\beta \boldsymbol{\beta}_\beta - \mathbf{y})| < \lambda$, $\beta_j \in I_0$
Compute γ to obtain the correlation $|\mathbf{x}_j^\top (\mathbf{X}_\beta \boldsymbol{\beta}_\beta - \mathbf{y})| = \lambda_t + \gamma$
Choose β_j as the most correlated variable to the residual i.e.
 $i = \operatorname{argmax}_{i \in I_*} |\mathbf{x}_i^\top (\mathbf{X}_\beta \boldsymbol{\beta}_\beta^t - \mathbf{y})|$

${\sf Algorithm}$

Algorithm 1 Lasso solution path

Set
$$t=0$$
, $eta^0=0$, $I_eta=\emptyset$ and $I_0=\{1,\cdots,d\}$

Find β_j to add to $I_{\beta}: j = \operatorname{argmax} \ |\mathsf{x}_j^\top \mathbf{y}|, \quad j \in I_0 \ (\mathsf{max of correlation})$

repeat

Compute the descent direction ${f w}$

Compute the step size γ

Update the sets I_β and I_0 according to the event detected $(I_0 \rightarrow I_\beta \text{ or } I_\beta \rightarrow I_0)$

t = t + 1

until termination

Interpretation of Lasso path (V. Guigue)

projection of the residual error on the active variable

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 27 / 43

stepsize computation, same correlation of residual errors

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 27 / 43

projection of the residual error on the active variable

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 27 / 43

stepsize computation

Example (provided by A. Rakotomamonjy)

• Diabetes data set : 10 variables, 442 observations

Parameters β

Output

Linear SVM

Sets

 $I_0 = \{x_i \mid y_i f(x_i) > 1\}, \quad I_1 = \{x_i \mid y_i f(x_i) < 1\}, \quad I_\alpha = \{x_i \mid y_i f(x_i) = 1\}$

3

< □ > < □ > < □ > < □ > < □ > < □ >

3

Path derivation

- Let $\lambda_t \to \text{solution } \alpha_i^t, \ i \in I_{\alpha}$, the sets I_{α}, I_0, I_1
- $\lambda = \lambda_t + \gamma$ such as the sets remain unchanged
- Hence $\forall x_j \in I_{\alpha}, f(x_j) = \langle \omega, x_j \rangle = y_j$

イロト イポト イヨト イヨト

Linear SVM path

Optimality condition

$$\sum_{I_{\alpha}} \alpha_{i} y_{i} x_{i}^{\top} + \sum_{I_{1}} y_{i} x_{i}^{\top} = \lambda \omega \quad \text{with } \alpha_{i} \in]0,1[$$

Path derivation

• Let
$$\lambda_t o$$
 solution $lpha_i^t, \; i \in I_lpha$, the sets I_lpha, I_0, I_1

• $\lambda = \lambda_t + \gamma$ such as the sets remain unchanged

• Hence
$$\forall x_j \in I_{lpha}, f(x_j) = \langle \omega, x_j \rangle = y_j$$

$$\frac{\sum_{I_{\alpha}} \alpha_{i}^{t} y_{i} k(x_{i}, x_{j}) + \sum_{I_{1}} y_{i} k(x_{i}, x_{j})}{\sum_{I_{\alpha}} \alpha_{i} y_{i} k(x_{i}, x_{j}) + \sum_{I_{1}} y_{i} k(x_{i}, x_{j})} = \lambda y_{j}} \quad \text{with } k(x_{i}, x_{j}) = \langle x_{i}, x_{j} \rangle$$
$$\frac{G(\alpha - \alpha^{t})}{G(\alpha - \alpha^{t})} = (\lambda - \lambda_{t}) \mathbf{y}_{\alpha} \quad \text{with} \quad G_{ij} = y_{i} k(x_{i}, x_{j})$$

$$\boldsymbol{\alpha} = \boldsymbol{\alpha}^t + (\lambda - \lambda_t) \mathbf{w} \qquad \mathbf{w} = \boldsymbol{G}^{-1} \mathbf{y}_{\boldsymbol{\alpha}}$$

Linear variation

$$\boldsymbol{\alpha} = \boldsymbol{\alpha}^t + (\lambda - \lambda_t) \mathbf{w}$$

The variation holds until the sets change

Event detection

• $x_i \in I_{\alpha} \rightarrow I_0 \cup I_1$ α_i goes to 0 or 1

•
$$x_i \in I_0 \cup I_1 \rightarrow I_\alpha$$

 $y_i f(x_i)$ becomes 1

Linear variation

$$\boldsymbol{\alpha} = \boldsymbol{\alpha}^t + (\lambda - \lambda_t) \mathbf{w}$$

The variation holds until the sets change

Event detection

(日) (周) (日) (日)

• $x_i \in I_{\alpha} \rightarrow I_0 \cup I_1$ α_i goes to 0 or 1

•
$$x_i \in I_0 \cup I_1 \rightarrow I_\alpha$$

 $y_i f(x_i)$ becomes 1

Algorithm

Similar to the algorithm of lasso path

Remark

- Nonlinear case : $\min_{f \in \mathcal{H}} \sum_{i=1}^n \max(1-y_i f(\mathsf{x}_i), 0) + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2$
- Use the reproducing property $\langle f(\cdot), k(x, \cdot) \rangle$ to derive the previous results

Gasso (LITIS, EA 4108) Regula

SVM regularization path

Dealing with the bias term of SVM model

- SVM model : $f(x) = \langle \omega, x \rangle + b$
- Problem : min_{ω,b} $\sum_{i=1}^{n} \max(1 y_i f(x_i), 0) + \frac{\lambda}{2} \|\omega\|^2$
- Optimality conditions
 - For $\omega : \sum_{I_{\alpha}} \alpha_i y_i x_i^{\top} + \sum_{I_1} y_i x_i^{\top} = \lambda \omega \text{ with } \alpha_i \in]0,1[$

• For
$$b: \sum_{I_{\alpha}} \alpha_i y_i + \sum_{I_1} y_i = 0$$
 with $\alpha_i \in]0,1[$

• Piecewise linear variation

Let $\alpha_0 = \lambda \, b$. Using the previous analysis, one gets

$$\begin{bmatrix} \boldsymbol{\alpha} \\ \alpha_0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\alpha}^t \\ \alpha_0^t \end{bmatrix} + (\lambda - \lambda_t) \begin{bmatrix} \boldsymbol{G} & \mathbf{1}^\top \\ \mathbf{1} & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{y}_{\alpha} \\ \mathbf{0} \end{bmatrix}$$

Gasso (LITIS, EA 4108)

g Antwerp, 19/09/2008

Nonlinear SVM with gaussian kernel

Parameters α

Decision function

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 33 / 43

Introduction

2 Regularization path and pareto frontier

3 Efficient regularization path running

Two examples of regularization path

Extensions and efficiency evaluation

Common points between lasso and SVM path

		CDDV
LASSO	SVM	U ltis
$oldsymbol{eta}=$ 0	Initialize $oldsymbol{lpha}$	
While $I_0 \neq \emptyset$	While $I_1 eq \emptyset$	
Move a variable x _j	Move a point <i>x_j</i>	
$I_0 \leftrightarrow I_{eta}$	$I_0 \leftrightarrow I_lpha \leftrightarrow I_1$	
compute w	compute w	
compute γ	compute γ	
$oldsymbol{eta} = oldsymbol{eta}^t + (\lambda - \lambda_t) \mathbf{w}$	$oldsymbol{lpha} = oldsymbol{lpha}^t + (\lambda - \lambda_t) oldsymbol{w}$	

Lesson

Running the path, we select the "good" variables or points and set the other parameters to zero

Why this behavior of sparsity?

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwe

Olific

Regularization path and sparsity

Olitis

Definition : strong homogeneity set (variables)

$$I_0 = \{ j \in \{1, ..., d\} \mid \beta_j = 0 \}$$

Theorem

Regular if $L(\beta) + \lambda P(\beta)$ differentiable and if $l_0(\mathbf{y}) \neq \emptyset$

$$orallarepsilon>0,\;\exists \mathbf{y}'\in\mathcal{B}(\mathbf{y},arepsilon)$$
 such that $\mathit{I}_0(\mathbf{y}')
eq \mathit{I}_0(\mathbf{y})$

Singular if $L(\beta) + \lambda P(\beta)$ NON differentiable and if $I_0(\mathbf{y}) \neq \emptyset$

$$\exists arepsilon > \mathsf{0}, \; \forall \mathbf{y}' \in \mathcal{B}(\mathbf{y}, arepsilon) \; \mathsf{then} \; \mathit{l}_{\mathsf{0}}(\mathbf{y}') = \mathit{l}_{\mathsf{0}}(\mathbf{y})$$

singular criteria \implies sparsity

Nikolova, 2000

L_1 criteria are singular in 0

singurality provides sparsity

Gasso (LITIS, EA 4108)

Regularization path and machine learning

Antwerp, 19/09/2008

Introduction

2 Regularization path and pareto frontier

3 Efficient regularization path running

Two examples of regularization path

5 Regularization path and sparsity

Extensions and efficiency evaluation

Lasso type

Seminal paper : LAR algorithm [Efron et al. 2004]

- Elastic net (double penalization L_1 and L_2) [Zhou and Hastie, 2005]
- Fused Lasso (L1 and total variation penalizations) [Tibshrani et al. 2005]
- Grouped Lasso [Yuan and Lin, 2006]
- Least absolute deviation regression (L_1 loss and penalization) [wang et al. 2007]
- Non negative garotte [Yuan and Lin, 2007]
- L1 penalization in infinite dimension [Rosset et al. 2007]
- Graph data and Lasso [Tsuda, 2007]
- • •

SVM type

Seminal paper : SVM path [Efron et al. 2004]

- 1-norm SVM (SVM with L1 penalty) [Zhou et al. 2003]
- Assymetric cost SVM [Bach et al. 2005]
- Doubly regularized SVM [Wang al. 2006]
- *v*-SVM [Loosli et al. 2007]
- SVR [Gunter and Zhu, 2005], [Wang et al. 2006], [Gasso et al., 2007]
- Laplacian Semi-supervised SVM [Wang et al. 2006], [Gasso et al. 2007]
- Oneclass SVM [Rakotomamonjy and Davy 2007]
- Ranking SVM [Zapien et al. 2008]
- • •

ν -SVR [Gasso et al. 06]

 $\min_{f,\epsilon} \frac{1}{n} \sum_{i=1}^{n} \max(0, |y_i - f(x_i)| - \epsilon) + \nu\epsilon + \frac{\lambda}{2} \|f\|^2 \qquad \text{s.t.} \quad \epsilon \ge 0$

- Two hyperparameters : ν and ε
- ε insensitive tube with ε : tube width

ν -SVR [Gasso et al. 06]

$$\min_{f,\epsilon} \frac{1}{n} \sum_{i=1}^{n} \max(0, |y_i - f(x_i)| - \epsilon) + \nu \epsilon + \frac{\lambda}{2} \|f\|^2 \qquad \text{s.t.} \quad \epsilon \ge 0$$

- Two hyperparameters : u and arepsilon
- ε insensitive tube with ε : tube width

Toy problem

- ullet Gaussian kernel with bandwidth $\sigma=0.05$
- Run the $\lambda\text{-path}$ for different values of ν
- Average over 10 trials

ν -SVR [Gasso et al. 06]

 $\min_{f,\epsilon} \frac{1}{n} \sum_{i=1}^{n} \max(0, |y_i - f(x_i)| - \epsilon) + \frac{\lambda}{2} \|f\|^2 \qquad \text{s.t.} \quad \epsilon \ge 0$

- Two hyperparameters : u and arepsilon
- ε insensitive tube with ε : tube width

N = 1500 samples - Computational time (see	N =	1500	samples	- Con	nputational	time	(sec)
--	-----	------	---------	-------	-------------	------	------	---

	$\nu = 0.01$	$\nu = 0.5$	$\nu = 0.75$
λ -path	1.70 ± 0.076	1.95 ± 0.03	2 ± 0.031
u-SVR with warm restart	4.30 ± 0.053	21.8 ± 0.15	21.15 ± 0.12

Computational gain up to 11 Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 39 / 43

Efficiency of the algorithm : Boston Housing data (UCI repository)

- Multidimensional regression ($x \in \mathcal{R}^{13}$), 506 points
- N = 406 samples for training
- ullet Gaussian kernel with different bandwidths σ
- Run the λ -path for different values of u
- Average over 10 trials (random data selection)

Olitiş

Efficiency of the algorithm : Boston Housing data (UCI repository)

- Multidimensional regression ($x \in \mathcal{R}^{13}$), 506 points
- N = 406 samples for training
- ullet Gaussian kernel with different bandwidths σ
- Run the λ -path for different values of u
- Average over 10 trials (random data selection)

	I. T	()
	u = 0.01	u = 0.5	u = 0.75
λ -path	0.95 ± 0.32	1.95 ± 0.35	2.06 ± 1.31
u-SVR with warm restart	8.6 ± 1.96	13.08 ± 5.17	13.77 ± 5.15

Computational gain up to 9

Gasso (LITIS, EA 4108)

Regularization path and machine learning

Antwerp, 19/09/2008

Olitis

Efficiency of the algorithm : Boston Housing data (UCI repository)

- Multidimensional regression ($x \in \mathcal{R}^{13}$), 506 points
- N = 406 samples for training
- ullet Gaussian kernel with different bandwidths σ
- Run the λ -path for different values of u
- Average over 10 trials (random data selection)

° •			
	u = 0.01	u = 0.5	u = 0.75
λ -path	12.31 ± 0.34	12.29 ± 0.44	12.27 ± 0.38
u-SVR with warm restart	51.44 ± 0.78	51.63 ± 1.24	51.32 ± 0.95

au=0.1 -	Computational	time	(sec))
----------	---------------	------	-------	---

Computational gain up to 4

Gasso (LITIS, EA 4108)

Regularization path and machine learning

Antwerp, 19/09/2008

One-class SVM [Rakotomamonjy et al., 07]

Levet set estimation

$$\min_{\beta,\rho,\xi_i} \quad \frac{\lambda}{2} \| \beta \|^2 + \sum_{i=1}^n \xi_i - \lambda \rho \\ st \qquad \xi_i \ge 0, \quad x_i^\top \beta \ge \rho - \xi_i \quad \forall i = 1, \cdots, n$$

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 41 / 43

G

41 / 43

One-class SVM [Rakotomamonjy et al., 07]

Tab.: Comparing computational time in seconds of alpha seeding and a regularization path approach for computing several level sets

Datasets	# examples	σ	Alpha Seeding	Reg. Path	
credit	653	1	18.1	0.7	
		5	21.4	3.8	
		10	15.8	4.4	
pima	768	1	54.3	0.8	
		5	39.8	20.7	
		10	25.5	11.2	
yeast-cyt	1484	1	42.9	49.42	_
		5	42.6	51.87	
		10	42.5	38.9	
spamdata	4601	1	18220	7460	_
		5	2265	1446	
		10	1114 • • • •	<i>□</i>	æ
asso (LITIS, EA 410	8) Regularizat	ion patl	n and machine learning	Antwerp, 19/09/2008	

Summary

- Linear combination of convex criteria ← Pareto frontier ≡ Regularization path
- Efficient computation of the path
- Efficient computation of the path and sparsity
- Practical for small and medium data set

Extensions

- Large scale data
- Non convex case
- Stopping on the path especially for more than two criteria

Gasso (LITIS, EA 4108)

Antwerp, 19/09/2008 42

- F. Bach, D. Heckerman, and E. Horvitz, On the path to an ideal ROC Curve : considering cost asymmetry in learning classifiers, AISTATS, 2005
- B. Efron, T. Hastie, I. Johnstone and R. Tibshirani, Least angle regression, Annals of statistics, vol. 32 (2), pp.407-499, 2004
- G. Gasso, K. Zapien and S. Canu, Computing and stopping the solution paths for ν-SVR, ESANN 2007
- G. Gasso, K. Zapien and S. Canu, Sparsity regularization path for Semi-Supervised SVM, ICMLA 2007
- Gunter and J. Zhu, Computing the solution path for SVM, NIPS 2005.
- ullet G. Loosli, G. Gasso and S. Canu, Regularization paths for u-SVM and u-SVR, ISNN 2007
- M. Nikolova, Local strong homogeneity of a regularized estimator, SIAM Journal on Applied Mathematics, vol. 61, no. 2, pp. 633-658, 2000.
- A. Rakotomamonjy, M. Davy, One-class SVM regularization path and comparison with alpha seeding, ESANN 2007
- S. Rosset, Ji Zhu, Piecewise Linear Regularized Solution Paths, Annals of Statistics, 2007
- S. Rosset, G. Swirszcz1, N. Srebro and Ji Zhu, L₁ Regularization in Infinite Dimensional Feature Spaces, Colt 2007

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008

43 / 43

3

< □ > < □ > < □ > < □ > < □ > < □ >

- R. Tibshirani, S. Rosset, Ji Zhu and K. Knight, Sparsity and Smoothness via the Fused Lasso. JRSSB, 2005.
- K. Tsuda, Entire Regularization Paths for Graph Data, ICML 2007
- G. Wang, D.-Y. Yeung, F. H. Lochovsky, Two-Dimensional Solution Path for Support Vector Regression, ICML, 2006
- G. Wang, T. Yeund, and F. H. Lochovsky. Solution path of semi-supervised classification with manifold regularization. ICDM 2006.
- L. Wang, M. Gordon and J. Zhu, Regularized Least Absolute Deviations Regression and an Efficient Algorithm for Parameter Tuning, ICDM'06
- L. Wang, J. Zhu, and H. Zou. The doubly regularized support vector machine. Statistica Sinica, 2006
- M. Yuan, Y. Lin, Model selection and estimation in regression with grouped variables, JRSSB, 2006.
- M. Yuan and Y. Lin. On the non-negative garrotte estimator. Journal of The Royal Statistical Society Series B, 2007.
- K. Zapien, T. Gartner, G. Gasso, and S. Canu, Regularisation Path for Ranking SVM, ESANN 2008
- J. Zhu and T. Hastie, Regularization anf variable selection via the elastic net, JRSSB, 2005.
- J. Zhu, S. Rosset, T. Hastie and R. Tibshirani. 1-Norm Support Vector, NIPS 2003.

Gasso (LITIS, EA 4108)

Regularization path and machine learning

Antwerp, 19/09/2008