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Learning problem

Framework

o Set of data D = {x;, yi}i=1,... n with (x,y) € X x Y
(X,Y) ~ Px,y with Px y the unknown joint distribution

@ Supervised learning
o Binary classification Y = {—1,+1}
o Regression YV =R

o Task : find a predictive model f

f: X =Y
x = y=1f(x)

o f belongs to an hypothesis space H
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Learning problem

Framework (ct'd)
@ A non-negative loss function ¢
o Expected risk minimization f* = argminsc Ex vy (4(f(X),Y))

o Empirical loss minimization
f= argmingcqy L(f)

with L(f) = 2 3°0 U(yi, f(x7))

@ To avoid overtraining, some constraints (smoothness, sparsity,
robustness, ...) are enforced on f by using a penalty term P(f)

@ Regularized optimization problem

f= argmingey L(F) + )\ P(f)

)\ € RT is a trade-off or regularization parameter
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Model selection

lllustration : non linear ridge regression

Irregular behaviors

Some irregular behavior

i
* Data — True function ——

Convenient solution

Convenient solution
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Model selection

Determination of )\

o Compute the decision function £, for different values of A

o Select the best solution according to some generalization performance
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Model selection

Determination of \

o Compute the decision function 7A$\ for different values of A

o Select the best solution according to some generalization performance

Two approaches
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Model selection

Determination of \

o Compute the decision function f,, for different values of A

@ Select the best solution according to some generalization performance

Two approaches

Q Grid search over predefined set {A1,..., Ax}

@ Values specified by the user

@ Retained solution ?*(x) depends highly on the grid resolution
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Model selection

Determination of )\

o Compute the decision function £, for different values of A

o Select the best solution according to some generalization performance

Two approaches
Q Grid search over predefined set {\1,..., Ak}
Q@ Compute the regularization path

o No values specified by the user
o Find automatically all solutions f(x)

Regularization path

The set of all solutions f(x) i.e. R = { A(x) | A€o, oof }
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Roadmap

© Regularization path and pareto frontier
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o Model : f(x) = x"B with 3 € R?
@ Problem :
mingea ly — XBIZ + 1 18]2

1

o Solution : B(\) = (XTX+ 1) XTy

I : identity matrix
o

Regularization path

o R={BM) | e, oof}
o A=0, Bs=(XTX )_1 XTy  (least squares solution)
o )\ — o0, fi’ =0
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1D linear regression path
2\

min,@eR Z(X,ﬂ — yi)2 + )\ B2
i—1 ,

—— admisible set
= pareto frontier
o B=0

© least square

The Loss L as a function of
the penalty P

{ L(B) = 2i1(xiB — yi)? B
P(B) = B
It holds that
{L(P):an:b\/ﬁ—i—c ° 3
a,b,andc € R Fig.: regularization path as a function of

L and P
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Notion of Dominance and Pareto frontier

{ L(B) =y — X8|
P(B) = |I18I1?

" /
Dominance '

A vector (31 dominates
another vector 3, if o )
L(B:1) < L(B,) and — -
P(B81) < P(B,) A

IBI°

Pareto frontier
Fig.: dominated point (red), non dominated point

Pareto frontier is the set
of all non dominated
solutions

1XB - YIP

(purple) and Pareto frontier (blue).

Pareto frontier < Reg. path
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3 equivalent formulations

It works for CONVEX criteria ! )|

Formulation 1 : linear /

combination of L and P

11XB - Y|P

ming [ly — XB|2 + 1 []?

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 11 / 43



3 equivalent formulations
7\

It works for CONVEX criteria! |

Formulation 1

ming [ly = XBIP + A 18I

Formulation 2

ming [ly — X8
st. IBIP<C

g-vi?

neie
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3 equivalent formulations
7\

It works for CONVEX criteria! |

Formulation 1

ming [ly = X8I + A 18]

Formulation 2 /

/
ming [ly — X8|” «’J
st. |82 < C

0B - YIP

Formulation 3

{ ming |3 :

st. |y~ Xg]2 < ¢
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The importance of convexity

minIBL(,B)
minlgP(,B)

— Pareto frontiel
--- Lagrangian

P(a) = |laf|

L@ = lIXa - yi

Non convex case

min gga L(B) + \P(B)

[al/(1+{al)

P(a)

— Pareto frontie
--- Lagrangian

L@ =lxa-yfl

The 3 formulations are not equivalent
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@ learning is a multi objective problem
o the regularization path is the Pareto frontier
@ beware the non convex case

o it works for more than 2 criteria

To tune (efficiently) the regularization parameter A

Gasso (LITIS, EA 4108) Regularization path and machine learning

Antwerp, 19/09/2008



Roadmap

© Efficient regularization path running
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Tuning the regularization parameter A

7\
Ridge regression example ming gq ly — X8>+ ) 8]
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Tuning the regularization parameter A

Ridge regression example ming gq ly — X8> + ) |8

o Grid Search

foreach \{ < Xy < ... < A < ... < Ak

compute B, = (XTX + 1) XTy, t=1,--- K O (Kd3)
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Tuning the regularization parameter A

Ridge regression example ming gq ly — X8> + ) |8

o Grid Search

foreach \{ < Xy < ... < A < ... < Ak

compute B, = (XTX + 1) XTy, t=1,--- K O (Kd3)

o Warm start
B; = ®(8,_;) (using £ conjugate gradient iterations)
O(K€d2)
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Tuning the regularization parameter A

Ridge regression example ming gq ly — X8> + ) |8

o Grid Search

foreach \{ < Xy < ... < A < ... < Ak

compute B, = (XTX + 1) XTy, t=1,--- K O (Kd3)

o Warm start
B; = ®(8,_;) (using £ conjugate gradient iterations)

2
o Warm start + prediction step O(Kﬁd )

B =p, |+ PV 3(L(Be—1) + AeP(B,_1))  (prediction step)
B; = d>(,3£p)) (correction step using conjugate gradient)

O(Kl'd?)
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Tuning the regularization parameter A

Ridge regression example ming gq ly — X8> + ) |8

o Grid Search

foreach \{ < Xy < ... < A < ... < Ak

compute B, = (XTX + 1) XTy, t=1,--- K O (Kd3)

o Warm start
B; = ®(8,_;) (using £ conjugate gradient iterations)
2
o Warm start + prediction step O(Kﬁd )
B =p, |+ PV 3(L(Be—1) + AeP(B,_1))  (prediction step)
B; = d>(,3£p)) (correction step using conjugate gradient)
o K 2
@ Use only the prediction step ! O( e )

By =B_1 +\V(B,_1) (prediction step)
to do so the regularization path has to be piecewise linear

O(Kd?)
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How to choose L and P to get linear reg. path?

one cost is piecewise quadratic

Solution path is linear < . .
and the other one piecewise linear

convex case [Rosset & Zhu, 07]
ming ga L(B) + \P(8)
B +e) = BA)
S

© Piecewise linearity : lim = constant

e—0

Q Optimality VL(B(N) + AVP(B(N)) =0

VL(BA+¢€)+(A+e)VP(B(A+¢€))=0

© Use Taylor expansion

i BO+2) - B

e—0

=[V2L(B(\) + AV2P(B(N))] "VP(B(N))

V2L(B()\)) = constant and  V2P(B()\)) =0
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Piecewise linear regularization path algorithms

L] P regression classification | clustering
Ly | Ly Lasso/LARS L1 L2 SVM
Ly | L SVR SVM OC SVM
L] L L1 least L1 SVM

absolute deviation

Tab.: example of piecewise linear regularization path algorithms.

d
P:oLp=)_ I8P L: Ly:|f(x)—ylP hinge (yf(x)—1)2
— |
a—insensitivJe 0 if [f(x) —yl<e
|f(x) —y| —e otherwise

F(x) -yl if|f(x) -yl <t

Huber's loss :
{ 2t|f(x) — y| — t*> otherwise
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Examples of Loss and Penalty

—— 0/1loss — e insistive
— hinge -l

— hinge® | L2

~  logistic \ — Hubler

Loss L
Loss L

Regularization path and machine learning
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Piecewise regularization path

o the problem

mingcgs L(B) +AP(B) < {B(N) [ A€ 0,0}

o efficient computation
— piecewise linearity
Bry1 = B + (Aeq1 — Ae)w
@ piecewise linearity

= either L or P is Ly type
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An old result revisited

o Portfolio management (Markovitz, 1952)
. . : 137
o Gain vs. risk ming 28 QB
with e'8=C

o efficiency frontier : piecewise linearity (Critical path Algo.)

o Sensitivity analysis (Heller, 1954) I. HELLER (1954) Sensitivity analysis in
linear programming. L.R.P. Seminar, The George Washington University,
Logistics Research Project, January 1954.

min g 1BTQB+(c+ ) Ac)'B
avec AB=b+pu Ab

o Parametric programming (Gal 1968)
o Parametric Linear Programming is piecewise linear
o PQP piecewise quadratic
o multiparametric programming...
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Roadmap

@ Two examples of regularization path
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Lasso (Basis pursuit) problem

A

minﬁeRd ly — Xﬁ”z
d

d
min gcpa ly = XBJI* + A Z 185l with Z Bil < €
i=1 T
i=1

@ Assume variables xj,j = 1,---,d and y are centered and normalized

2D-Lasso )

B2

_ st squares =3, =
Solution q small C leadsto §1 =32 =0

of LASSO :
high C produces the least

squares solution
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Lasso regularization path
A

1 d
ming Sy —XBI*+X 15

i=1

Optimality condition for variable x; "
—x/ (XB—y)+A 9(|3) = 0
~——
correlation ‘ (1B = signe(®)
with :
[ sign(B) if 340 i RSN
6(|ﬂ|)_{aj€]—1,1[ if 8 =0
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Lasso regularization path
1 A

ming o[y —XBI2+X > 15

i=1

Optimality condition for variable x; o

—x (XB —y)+2 9(|8;]) = 0 : \/
| t |

correlation ' apl) = signe(p)
with
sign(ﬁ) if /8 7& 0 ' A(IBl)yeg € 110

6(|ﬂ|)={ aj€]l-1,1] if gj=0

Active set : Ig = {3; | Bj # 0} and Inactive set Iy = {g; | B; = 0}

) (XB-y)[=X Bl and |/ (XB-y) <X €l
———— ———

correlation correlation

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 23 /43



Lasso regularization path
2\

d
1
ming Slly = XBI1* + A > |5
i=1

o Let ﬁﬁ = ﬁ(lﬂ) and X = X(:’ Iﬂ) . A1Bl) = signe(®)

@ optimality conditions become

—X3 (X385 —y) + Asign(Bg) =0

Bl < H11
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Lasso regularization path

1Bl

o Let B4 = B(Is) and X = X(:, I5) \/

o optimality conditions become L ameseen

—Xj(XBs —y) + Asign(Bs) =0 i

@ For )¢, assume the solution ,6% and the corresponding set Ig,

o Assume A = \; + 7 such as /£ and sign(B5) remain unchanged

X@Tr(xﬂﬁ,g—Y) = \rsign(Bs)
Xﬁ(x,@ﬁg—Y) = )\Sig"(ﬁg)

X;Xs(Bs —B) = (A=) sign(Bp)

Bs

B+ (A= A)w =85 +yw

Descent direction w = (X} Xz) sign(85)
Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 24 /43




Lasso regularization path

Bs = Bh+yw

The linear variation holds until the set Iﬁt changes = detect events

Event detection

@ (3 € I3 moves to

Compute the step size y such as 0 = 5] + v w;

o f3; € Iy moves to I3

Recall |x;/ (XsBs—y)l =X, Becls and |x/ (XgBs—y)I <A, fGich
Compute v to obtain the correlation |ij (Xﬁﬁﬂ — y) | = At +7

Choose [3; as the most correlated variable to the residual i.e.
j = argmax;e, x{ (XsB5 - )|
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Algorithm of Lasso regularization path

Algorithm

Algorithm 1 Lasso solution path

Sett=0,8"=0lg=0and lp={1,---,d}
Find 3 to add to /5 : j = argmax [x]'y|, j € ly (max of correlation)
repeat

Compute the descent direction w

Compute the step size ~y

Update the sets /g and ly according to the event detected
(Io — Iﬁ or Iﬁ — /0)

t=t+1

until termination
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Interpretation of Lasso path (V. Guigue)

the solution in the X space

X3

fo

starting point : all the 3 are set to 0
residual : R=XB—y=y
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Interpretation of Lasso path (V. Guigue)

the solution in the X space

projection of the residual error on the active variable
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Interpretation of Lasso path (V. Guigue)

the solution in the X space

stepsize computation, same correlation of residual errors
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Interpretation of Lasso path (V. Guigue)

the solution in the X space

X3

projection of the residual error on the active variable
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Interpretation of Lasso path (V. Guigue)

the solution in the X space

X3 _

1

1

|

X2 1

""""""""""" T:""'
,—”'fZ/,
,/ﬁ »)’
% )

f X,

stepsize computation
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lllustration of Lasso regularization path

Example (provided by A. Rakotomamonjy)

o Diabetes data set : 10 variables, 442 observations

Parameters 3 Output
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examplelar1.avi
Media File (video/avi)


exampleout1.avi
Media File (video/avi)


Model :  f(x) = (w,x) (to easy the presentation)

Problem :  min,, Z max(1 — y;if(x;),0) + g |w||?

i=1
H=ma?((0,1—yf)
~
n o
— Za;y;x,—T + Aw=0 : ]
i=1 é(H)y=0ou1
aj=1 if yif(xi) <1
a; =20 if yif(x;))>1
o; G]O, 1[ if y,'f(X,') =1 6(H)X_0"é]0,1[

lo={xi|yif(x;) >1}, h={xlyf(x) <1}, lo={xi|yif(x)=1}
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Linear SVM path

H = max(0,1-yf)
Optimality condition _—
Z/a oz,-y,-xl-T + le y,-x,-—r = Aw with a; €]0,1]

AH), g £ 1011

Gasso (LITIS, EA 4108) Regularization path and machine learning Antwerp, 19/09/2008 30 /43



Linear SVM path

H = max(0,1-y)

Optimality condition ¥

AH)=0ou1

Z,a a,-y,-x,-—r + le y,-x,-T =\w with o; €]0,1]

AH), g £ 1011

Path derivation

o Let \¢ — solution af, i € I, the sets Iy, o, h
@ )\ = A\t + 7 such as the sets remain unchanged

@ Hence VXJ S Iou 7‘.(XJ) = <w,Xj> =Y
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Linear SVM path

Optimality condition

AH)=0o0ut

Z/a a,-y,'XI-T + le y,-x,-—r = Aw with a; €]0,1]

AH), g £ 1011

Path derivation

o Let A; — solution af, i € I, the sets Iy, o, h
@ \ = \; + 7 such as the sets remain unchanged

o Hence V xj € L, f(Xj) = (w, xj) = y;

o, oryik(xi, X)) + 22, vik(xioxg) = Acy; with k(xi, x;) = (%, %)
Sor aivik(xi,xg) + 30, vik(xi,x) = Ay

Gla—a’) = (A=A)ya with Gy = yik(x,x)

o = o'+ (A-A)w w=Gly,
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SVM regularization path

Event detection

Linear variation

e x;€l,— Ukl
a = a'+(A-A)w «j goes to 0 or 1
e x; €Ul — I,

The variation holds until the sets change
yif(x;) becomes 1
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SVM regularization path

Event detection

Linear variation

o x;€l,— UKL

a = a'+ (A= A\)w «j goesto 0 orl

o xi€hUh — I,
yif (x;) becomes 1

Algorithm
Similar to the algorithm of lasso path

The variation holds until the sets change

o Nonlinear case : minseyy >or g max(1 — yif(x;),0) + 3 [|f]13
o Use the reproducing property (f(-), k(x,-)) to derive the previous
results
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SVM regularization path

A

Dealing with the bias term of SVM model

o SVM model : f(x) = (w,x) + b
o Problem : min, , 7 ; max(1 — yif(x),0) + 3 ||lw|?

o Optimality conditions
o Forw: Y, aiyixm +X, yix;' =Xw witha; €]0,1]

o Forb: ), aiyi+, yvi=0 witha; €]0,1]

o Piecewise linear variation

Let ag = A\ b. Using the previous analysis, one gets

[&]-[a] e[ 3] %]
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lllustration of SVM regularization path

Nonlinear SVM with gaussian kernel

Parameters a Decision function
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video1isnn.avi
Media File (video/avi)


video2isnn.avi
Media File (video/avi)


Roadmap

© Regularization path and sparsity
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Common points between lasso and SVM path
LASSO SVM )

B=0

While Iy # )
Move a variable x;
Io — Ig
compute w
compute 7y

B=p8"+(\—A\)w

Initialize o

While i, # ()
Move a point x;
Iy — Iy, — K
compute w
compute vy

a=a'+ (A= \)w

Running the path, we select the “good” variables or points and set the
other parameters to zero

Why this behavior of sparsity ?

Gasso (LITIS, EA 4108)
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Regularization path and sparsity

Definition : strong homogeneity set (variables)

h={jec{1,..d}|g=0)

Regular if L(B) + AP(B) differentiable and if lo(y) # 0
Ve > 0, 3y’ € B(y,¢) such that h(y’) # l(y)

Singular if L(B) + AP(B) NON differentiable and if lp(y) # 0

Je > 0, Vy' € B(y, ¢) then I(y') = lo(y)
singular criteria = sparsity Nikolova, 2000

L; criteria are singular in 0
singurality provides sparsity
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Roadmap

@ Extensions and efficiency evaluation
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Extensions of piecewise linear path algorithm

Lasso type
Seminal paper : LAR algorithm [Efron et al. 2004]

o Elastic net (double penalization L1 and Lp) [Zhou and Hastie, 2005]

@ Fused Lasso (L; and total variation penalizations) [Tibshrani et al. 2005]

@ Grouped Lasso [Yuan and Lin, 2006]

o Least absolute deviation regression (L loss and penalization) [wang et
al. 2007]

@ Non negative garotte [Yuan and Lin, 2007]

o L; penalization in infinite dimension [Rosset et al. 2007]

o Graph data and Lasso [Tsuda, 2007

° -
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Extensions of piecewise linear path algorithm
‘\
Seminal paper : SVM path [Efron et al. 2004] I

1-norm SVM (SVM with L; penalty) [Zhou et al. 2003]

Assymetric cost SVM [Bach et al. 2005]

Doubly regularized SVM [wang al. 2006]

-SVM [Loosli et al. 2007]

SVR [Gunter and Zhu, 2005], [Wang et al. 2006], [Gasso et al., 2007]
Laplacian Semi-supervised SVM [Wang et al. 2006], [Gasso et al. 2007]
Oneclass SVM [Rakotomamonjy and Davy 2007]

Ranking SVM [zZapien et al. 2008]
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Empirical efficiency evaluation

v-SVR [Gasso et al. 06]
ming,eq Y7y max(0, |yi — f(xi)| — €) + ve + 5| £

o Two hyperparameters : v and ¢

@ ¢ insensitive tube with € : tube width

T T T T T 0.8, T T T T T T T T
+ Data
0.6 .
~ True function
ot
= L5
@
2
g
a
2 1
o}
o
£
]
Y05
0 . .
-3¢ -2 +€ +2¢ +3¢

3 0
Residuals: r = y-f(x)
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Empirical efficiency evaluation

v-SVR [Gasso et al. 06]

ming 5 >oiy max(0,|yi — £(x)| = €) + ve + 3| I

o Two hyperparameters : v and ¢

@ ¢ insensitive tube with ¢ : tube width

Toy problem

+ Data
~—— True function

o Gaussian kernel with bandwidth ¢ = 0.05
@ Run the A-path for different values of v
o Average over 10 trials

Gasso (LITIS, EA 4108)
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Empirical efficiency evaluation

v-SVR [Gasso et al. 06]

ming 2 0y max(0, |y — F(q)| — ) +ve + 3F[2 st e>0

o Two hyperparameters : v and ¢

@ ¢ insensitive tube with ¢ : tube width

N = 1500 samples - Computational time (sec)

v =20.01 v=205 v=20.75
A-path 1.70 £0.076 | 1.95+£0.03 2+0.031
v-SVR with warm restart | 4.30 +0.053 | 21.8 +0.15 | 21.15 +0.12

Computational gain up to 11 )

Gasso (LITIS, EA 4108)

Regularization path and machine learning Antwerp, 19/09/2008 30 /43



Empirical efficiency evaluation

Efficiency of the algorithm : Boston Housing data (UCI repository) J

Multidimensional regression (x € R'3), 506 points
N = 406 samples for training
Gaussian kernel with different bandwidths o

Run the A-path for different values of v

Average over 10 trials (random data selection)
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Empirical efficiency evaluation

Efficiency of the algorithm : Boston Housing data (UCI repository) J

Multidimensional regression (x € R'3), 506 points
N = 406 samples for training

Gaussian kernel with different bandwidths o

Run the A-path for different values of v

Average over 10 trials (random data selection)

Bandwidth o = 1 - Computational time (sec)

v =20.01 v=205 v=20.75
A-path 0.95+032| 1.95+0.35 | 2.06+1.31
v-SVR with warm restart | 8.6 £1.96 | 13.08 £5.17 | 13.77 +5.15

Computational gain up to 9 J
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Empirical efficiency evaluation

Efficiency of the algorithm : Boston Housing data (UCI repository) J

o Multidimensional regression (x € R'3®), 506 points
N = 406 samples for training

Gaussian kernel with different bandwidths o

Run the A-path for different values of v

Average over 10 trials (random data selection)

o = 0.1 - Computational time (sec)

v =20.01 v=205 v =075
A-path 1231 +£0.34 | 12.29+0.44 | 12.27 +0.38
v-SVR with warm restart | 51.44 +0.78 | 51.63 +1.24 | 51.32 +0.95

Computational gain up to 4 J
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Empirical efficiency evaluation
2\

One-class SVM [Rakotomamonjy et al., 07]

o Levet set estimation

st & >0, X,'T,BZP—f,' Vi=1,---,n
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Empirical efficiency evaluation

One-class SVM [Rakotomamonjy et al., 07] )

Tab.: Comparing computational time in seconds of alpha seeding and a
regularization path approach for computing several level sets

Datasets # examples ¢ Alpha Seeding Reg. Path

credit 653 1 18.1 0.7
21.4 3.8
10 15.8 4.4
pima 768 1 54.3 0.8
39.8 20.7
10 255 11.2
yeast-cyt 1484 1 42.9 49.42
42.6 51.87
10 42.5 38.9
spamdata 4601 1 18220 7460
5 2265 1446

10 1114 1039
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Concluding remarks

o Linear combination of convex criteria < Pareto frontier =
Regularization path

o Efficient computation of the path
o Efficient computation of the path and sparsity

o Practical for small and medium data set

v

Extensions

o Large scale data

@ Non convex case

@ Stopping on the path especially for more than two criteria
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