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Mobile devices and services

= Large diffusion of mobile devices, mobile services and
location-based services




Wireless networks as mobility data collectors

= Wireless networks infrastructures are the nerves
of our territory

= besides offering their services, they gather highly
informative traces about the human mobile
activities

= UbiComp infrastructure will further push this
phenomenon

= Miniaturization, wearability, pervasiveness will
produce traces of increasing

o positioning accuracy

o semantic richness




Which mobility data?

= Location data from mobile phones, i.e. cell
positions in the GSM/UMTS network.

= Location data from GPS-equipped devices —
Galileo in the (near?) future

Ias o Next/current generation of Nokia mobile phones have
/ on-board GPS receiver, and can transmit GPS tracks by
\ SMS/MMS

» Location data from
o peer-to-peer mobile networks
o intelligent transportation environments — VANET

o ad hoc sensor networks, RFIDs (radio-frequency ids)




Mobility, Data Mining and Privacy

= Towards an archaeology of the present?

= A scenario of great opportunities and risks:
o mining mobility data can yield useful knowledge;

Ias o but, individual privacy is at risk.
o \ = A new multidisciplinary research area is emerging
at this crossroads, with potential for broad social

and economic impact

o F. Giannotti and D. Pedreschi (Eds.)
Mobility, Data Mining and Privacy. Springer, 2008.
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Geogmphlc Pmacy—aware Knowledge Discovery and Delivery

A paradigmatic project:
GeoPKDD

http://www.geopkdd.eu

A European FP6 project
Geographic Privacy-aware

Knowledge Discovery and Delivery
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The GeoPKDD scenario

= From the analysis of the traces of our mobile phones it is
possible to reconstruct our mobile behaviour, the way we
collectively move

= This knowledge may help us improving decision-making in
many mobility-related issues:

o Planning traffic and public mobility systems in metropolitan areas;
o Planning physical communication networks

o Localizing new services in our towns

o Forecasting traffic-related phenomena

o Organizing logistics systems

o Avoid repeating mistakes

o Timely detecting changes.



Other Networks

Mobility Manager
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Real-time density estimation in urban areas

The senseable project: http://senseable.mit.edu/grazrealtime/ -



Madonnna Concert
Cellphone activity in Stadio Olimpico Rome
2006-08-06

During the song Live to Tell...

15:68
— - —+ : Madonna appeared against a mirrored cross
night _ morning afternoon evening




More ambitiously: mobllity patterns
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‘ From mobllity data to mobllity patterns
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‘ From mobility data to mobility patterns
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Mobility data mining and the
Geographic Knowledge
/Re‘* Discovery process







Other Networks

Mobility management
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GSM network
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Key questions

How to reconstruct a trajectory from raw logs, how to store
and query trajectory data?

How to classify trajectories according to means of
transportation (pedestrian, private vehicle, public
transportation venhicle, ...)?

Which spatio-temporal pattern and /models are useful
abstractions of mobility data”?

o How to compute such patterns and models efficiently?

Privacy protection and anonymity — how to make such
concepts formally precise and measurable?

o How to find an optimal trade-off between privacy protection
and quality of the analysis?

19



A lquided tour on mobility data mining technologies

= Trajectory databases

= Trajectory warehouses and OLAP

= Mobility data mining
= Privacy-preserving mobi

= Visual analytics for mobi

ity data mining

ity data
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Acquiring, Storing and
Querying trajectories

21



Data: typical structure and
typicat-stze

N;Time;Lat;Long;Height;Course;Speed;PDOP;State;NSat

8;22/03/07 08:51:52;50.777132;7.205580; 67.6;345.4;21.817,3.8;1808;4
9;22/03/07 08:51:56;50.777352;7.205435; 68.4;35.6;14.223;3.8;1808;4
10;22/03/07 08:51:59;50.777415;7.205543; 68.3;112.7;25.298;3.8;1808;4
11;22/03/07 08:52:03;50.777317;7.205877; 68.8;119.8;32.447;3.8;1808;4
12;22/03/07 08:52:06;50.777185;7.206202; 68.1;124.1;30.058;3.8;1808;4
13;22/03/07 08:52:09;50.777057;7.206522; 67.9;117.7;34.003;3.8;1808;4
14;22/03/07 08:52:12;50.776925;7.206858; 66.9;117.5;37.151;3.8;1808;4 .
15;22/03/07 08:52:15;50.776813;7.207263; 67.0;99.2;39.188;3.8;1808;4 -~
16;22/03/07 08:52:18;50.776780;7.207745; 68.8;90.6;41.170;3.8;1808;:
17,22/03/07 08:52:21,;50.776803;7.208262; 71.1;82.0;35.0
18;22/03/07 08:52:24;50.776832;7.208682; 68.6;117.1;11.34
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Location data producers:GSM, GPS,
WiFl

Location data (id, 3(, Yot |

are generated ,> Trajectory stream manager +
Trajectory reconstruction
trajectory data Ti =<< (Xil’ yil ’til)""’ (Xin- : yin_ ,tin_ ) >
| | [

(obj-id, traj-id, (x, y, t)°)
are reconstructed

Moving
~.Object
Database

— 5




The trajectory reconstruction problem

= From raw location data (obj-id, x, v, t)

asampleofa [ —
user’s movement |—
(GPS recordings) | —

= To trajectory data (obj-id, traj-id, (x, y, t)* /

a sample of
reconstructed
trajectories
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Reconstructing trajectories

= Collected raw data represent time-stamped geographical
locations

o Raw points arrive in bulk sets
o We need a filter that decides if the new series of data is to be
appended to an existing trajectory or not:
o Tolerance distance
o Temporal gap
o Spatial gap

[ )
o Maximum speed e 8 <
. . . = y y
o  Maximum noise duration




Reconstructing trajectories: parameters

Tolerance distance

o The tolerance of the transmitted time-stamped positions. In other
words, it is the maximum distance between two consecutive
time-stamped positions of the same object in order for the
object to be considered as stationary




Reconstructing trajectories: parameters

Tolerance distance

Temporal gap between trajectories

o The maximum allowed time interval between two consecutive
time-stamped positions of the same trajectory for a single moving
object

4emporal gap

> >
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Reconstructing trajectories: parameters

Tolerance distance

Temporal gap between trajectories
Spatial gap between trajectories

o The maximum allowed distance in 2D plane between two
consecutive time-stamped positions of the same trajectory

t A t
' :
o
(]
AT v
— / "> spatial gap
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Reconstructing trajectories: parameters

Tolerance distance
Temporal gap between trajectories

Spatial gap between trajectories
Maximum speed

o Itis used in order to determine whether a reported time-stamped
position must be considered as noise and consequently
discarded from the output trajectory




Reconstructing trajectories: parameters

Tolerance distance
Temporal gap between trajectories
Spatial gap between trajectories

Maximum speed
Maximum noise duration

o The maximum duration of a noisy part of a trajectory. Any
sequence of noisy time-stamped positions of the same object will
result in a newetrajectory given that itsd{tion exceeds noise

max

t‘. A

y
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Moving Objects Databases

The traditional database technology has been extended into Moving
Object Databases (MODs) that handle modeling, indexing and query
processing issues for trajectories

Spatial and temporal dimensions are considered as first-class citizens.

Both past and current (as well as anticipated future) positions of moving
objects are of interest.

SECONDO: Ralf Hartmut Guting, et. al. SECONDO: An Extensible
DBMS Platform for Research Prototyping and Teaching. In Proceeding
of the International Conference on Data Engineering, ICDE, pages
1115{1116, Tokyo, Japan, April 2005.

o PLACE: Mohamed F. Mokbel, et al. PLACE: A Query Processor for
Handling Real-time Spatio-temporal Data Streams (Demo). In
Proceeding of the International Conference on Very Large Data
Bases, VLDB, pages 1377{1380, Toronto, Canada, August 2004.

a0 DOMINO: Ouri Wolfson, et al.. Management of Dynamic Location
Information in DOMINO (Demo). In Proceeding of the International
Conference on Extending Database Technology, EDBT, pages
769{771, Prague, Czech Republic, March 2002.

o Location-aware Query Processing and Optimization: A Tutorial by
Mohamed F. Mokbel, MDMOQ7 3Y



‘ Querying the Moving Object Database

= Traditional R
spatial search &)y

o Range/ t
distance-based /
NN queries

= Trajectory-sub- 0,
sequence search

o Spatial / temporal \\?

intersections of
trajectories

= Topological / ’
directional search >

o enter (cross, leave, bypass, etc.) an area
o located west (south, etc.) of a (static) area
o located left of (right of, in front of, etc.) a (moving) object

The GeoPKDD warehouse system
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Location-based Database Servers

Layered Approach Built-in Approach

Spatio-temporal

33



HERMES: A Database Engine for Moving Objects

Built on top of ORACLE 10

Data model: absolute vs. relative location coordinates

Current location as a function in time over the starting location

linear and arc movement functions

o Trajectory management
Insert/Update/Delete a moving object or a segment of its trajectory

Functions over trajectories or sets of trajectories

o Data management
Supported indices: R-tree (for stationary data)
Development of a specialized index (TB-tree)

o Nikos Pelekis, Yannis Theodoridis: Boosting location-based
services with a moving object database engine. MobiDE 2006: 3-
10

o Nikos Pelekis, Yannis Theodoridis, Spyros Vosinakis, Themis
Panayiotopoulos: Hermes - A Framework for Location-Based Data
Management. EDBT 2006: 1130-1134
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Hermes: trajectory data type

Primitive definition:

o Unit_Function =
( x;:double, y;:double, x:double, y :double, x_:double, y :double,
v:double, a:double, flag: TypeOfFunction ) , where

o TypeOfFunction={ CONST, PLNML 1, ARC <1..8>}
o Unit_Moving_Point = ; ( p: Period(SEC), m: Unit_Function)

o Moving_Point = ,{ tab: set(Unit_Moving_Point) |(X.yq9nstraints...}
Y YY', v)e

X ) 1t
: /A te[tr, ) > Linear movernent 4 7l (X Yete)
// \
¢ \

f/ t € [t, t3) -> Arc movement >Q \

/‘ t € [t3, t4) -> Const movement ~ N )
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TB-Tree support in Hermes MOD engine

TB-Tree Index

a

a

a

Maintains the ‘trajectory’ concept

Each node consists of segments

of a single trajectory

Nodes are linked together in a chain

Effective for trajectory-oriented queries

Implemented in Hermes using
Oracle’s indexing extensibility

\\/
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HERMES includes

o Spatial entities:
Road Network Data (Nodes, Links)
Landmarks (ID, geometry, address, area, type)

Regions (ID, name, geometry)
o “Moving” entities:

Vehicles (object_id, traj_id, route)
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Query Operations

Entities involved in a query

o Reference Object: the type (trajectory or spatial entity) of
the object based on which query answers are retrieved

o Data Object: the type (trajectory or spatial entity) of the
objects participating in the posed query answer

Query classification

o Moving Point — Moving Point
o Moving Point — Static Spatial
o Static Spatial — Moving Point



Moving Point — Moving Point

Nearest Neighbor queries

a

Given a trajectory T, find
the K nearest (during T's
lifetime) parts of other
trajectories

Similarity queries

a

Spatial similarity
Spatiotemporal similarity
Speed-pattern similarity

Direction-pattern similarity

Athens - Piraeus Netwoik,

e e S




Moving Point — Static Spatial

Athens - Piraeus Networl

Point query

o Find the regions that intersect with
a given trajectory

Topological query

o Find the regions that contain,
overlap by intersect, overlap by
disjoint etc with a given trajectory [

T _)I

1

>

+

“

Nearest-Nelghbor query Athens - Piraeus Network

o Find the K nearest landmarks
(POls) to a given trajectory

LECFORION ATHINOI

P
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Static Spatial- Moving Point (1/2)

Athens - Piraeus Netwo

Range query

o Find trajectory parts fully
contained in a given
spatiotemporal window

Data Object

(-9'

Nearest Neighbor query =
Athens - Piraeus Netw:

o Find the K nearest trajectory
parts to a POI, within a given

time period

Al
-4
7

e
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Reference Object: = Data Object

T
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Static Spatial- Moving Point (2/2)

Topological query

o Find the trajectories that
enter/leave an area within

a given time period

o Find trajectories whose
location is east, west,
north, south, left, right,
front, behind of a POl

Athens - Piraeus Networlk,
i

¢ £ X =
< ->:<- anl T T
¥ FE
Athens - Piraeus Network
T : A
“ -)t(- = Reference Elb]e;',t = Data Dbject
& U
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Trajectory Datawarehouse




A trajectory warehouse system architecture

data analyst

data producers (mobile)

™) (desktop)
\’f . location data (obj-id, x, y, t)
\\\ / h (not trajectories)
\ )) (l are generated
e =
o~
v web service J
Trajectory warehouse custom s/w
/_\
b _
. trajectory
e stream
trajectory <— object <
i \&%i \ manager

Geographical context
is considered

(@)

gregated trajectory data
are computed
(ETL procedure)

trajectory data
(obj-id, traj-id, (x, y, t)*)
are reconstructed
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Data warehouses (DW)

Widely investigated for conventional, non-spatial data.

Some research on spatial DW, pioneering work by Han
et al. in 1998.

o Spatial and non-spatial dimensions and measures.
o OLAP operations in a spatial data cube.

Recent research direction: developing spatio-temporal
DW and supporting spatio-temporal OLAP operations in
order to extract summarized  spatio-temporal
information.

o Useful for: traffic supervision systems, transportation
and supply chain managements, mobile e-
commerce.

o Focus on methods for an efficient implementation of
spatio-temporal aggregate queries.
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Trajectory data warehousing

Trajectory data warehousing should
o extract aggregate information from MOD

o support a variety of dimensions (temporal, spatial, thematic, ...) and
measures (about space, time and their derivatives)

o Storing measures associated with facts, concerning the set of trajs
crossing the cell
— aggregate information in base cells

Challenges

o high volume and complex nature of data; special query processing
requirements

Results so far:
o design of a trajectory-oriented data cube

o extensions of traditional aggregation techniques to produce summary
information for OLAP analysis

47



Basic definitions & schemas

Trajectory T; =< (xi1 Vi, ’til)""

(i, Vi ot ) >

Moving Object Database
D={T, T, ..., T\}

OBJECTS (object-id: identifier, description: text, gender: {M | F},

birth-date: date, profession: text, device-type: text)

RAW_LOCATIONS (object-id: identifier, timestamp: datetime,

eastings-x: numeric, northings-y: numeric, altitude-z: numeric)

MOD_TRAJECTORIES (trajectory-id: identifier, object-id:

identifier, trajectory: 3D geometry)

Trajectory Data Warehouse

o Dimensions: Spatial,
Temporal, Object Profile

o Measures: count
(trajectories), count (users),
avg (distance traveled), avg

(travel duration), avg (speed),
avg (abs (acceler) )

OBJECT_PROFILE_DIM

TIME_DIM

PK

INTERVAL _ID

PK | OBJPROFILE ID
GENDER
BIRTHYEAR
PROFESSION
MARITAL STATUS
DEVICE_TYPE
FACT_TBL
SPACE_DIM PK,FK3 | INTERVAL_ID
PK | PARTITION_ID PK,FK2 | PARTITION_ID
PK,FK1 | OBJPROFILE_ID
PARTITION_GEOMETRY |qg—|
DISTRICT COUNT_TRAJECTORIES
cITY COUNT_USERS
STATE AVG_DISTANCE_TRAVELED
COUNTRY AVG_TRAVEL_DURATION
AVG_SPEED

AVG_ABS_ACCELER

INTERVAL_START
INTERVAL_END
HOUR

DAY

MONTH
QUARTER

YEAR
DAY_OF_WEEK
RUSH_HOUR

48




ETL processing: loading

Loading data into the dimension tables =
straightforward

Loading data into the fact table =» complex
o Fill in the measures with the appropriate numeric values

o In order to calculate the measures, we have to extract
the portions of the trajectories that fit into the base cells
of the cube

We propose two alternative Y

o cell-oriented

solutions to this problem: \> \¥
—

=\
/L

0 trajectory-oriented

49



ETL processing: algorithms

Cell-oriented approach (COA)

Search for the portions of trajectories
that they reside inside a
spatiotemporal cell

Perform a spatiotemporal
range query that returns the
portions of trajectories that
satisfy the range constraints

This is efficiently supported by
the TB-tree [VLDB’00]

Decompose the trajectory portions
with respect to the user profiles they
belong to

Compute measures for this cell
Repeat for the next cells

D

)|

‘\\
S

COUNT TRAJECTORIES = 2
COUNT USERS = 2

X



ETL processing

. algorithms

Trajectory-oriented approach (TOA)

Discover the spatiotemporal cells
where each trajectory resides in

In order to avoid checking all
cells, use the trajectory MBR

|ldentify the cells that overlap with the
MBR and contain portions of the
trajectory

Compute measures for each cell

Repeat for the next trajectories

y
am

&D COUNT TRAJECTORIES = %
COUNT USERS = 2

8"



ETL processing. measures

COUNT _
TRAJECTORIES

COUNT _USERS

AVG_DISTANCE
TRAVELED

AVG_TRAVEL _
DURATION

AVG_SPEED

AVG_ABS
ACCELER

count all distinct trajectory ids that pass through base cell (bc)

count all the distinct object ids that pass through bc

SUM _ DISTANCE (bc)
COUNT _ TRAJECTORIES (bc)

AVG _ DISTANCE _TRAVELED(bc) =

SUM _ DISTANCE (bc) = > len(TP,)
TP, ebc
SUM _ DURATION (hc)
COUNT _TRAJECTORIES (bc)

SUM _ DURATION (bc) = D' lifespan(TP,)

TP, ebc

AVG _TRAVEL _ DURATION(bc) =

SUM _ SPEED(bc)

COUNT _TRAJECTORIES (bc)
len (TP;)
lifespan (TP;)

AVG _ SPEED(bc) =

SUM _ SPEED (bc) = Y.
TP; ebc

SUM _ ABS _ ACCELER(bc)
COUNT _ TRAJECTORIES (bc)

speed ¢, (TP,) — speed. .. (TP
SUM _ ABS _ ACCELER(bc) = sp fml(: ) (F;P).n.tﬂ )
ifespan(TR,

TP, ebc 5&

AVG _ ABS _ ACCELER(bc) =




Aggregating measures in the cube

" At the lowest hierarchy level:
count of trajectories in R, = 3
count of trajectoriesin Ry = 2

count of trajectoriesin Ry = 1

A
W

How to compute the correct answer? N (—

ﬂ Roll up in R

Correct answer: 3 (!!) due to the fact
that the contents (trajectories) of the

A naive solution is to query back the raw data. partitions are overlapping

«Can we do something better?

Future steps, open issues

93



The distinct count problem: definition

During the ETL process, measures can be computed in an
accurate way by executing MOD queries

Once the fact table has been fed, aggregate-only information is
stored inside the TDW (no trajectory / user ids)

When rolling up, COUNT_USERS, COUNT_TRAJECTORIES and,
hence, all other measures defined over COUNT_TRAJECTORIES
are subject to the distinct count problem [ICDE’'04]:
11 CAll N \UL T\ TIWUAITNTIW 111 LI\ \1U\le 1\
for several timestamps during the \¥ /
interval, instead of counting this ol > Wﬁ\‘—
once, it is counted multiple times it
result K%/

if an nhlnr\f remains in the queryv e \

o4



The distinct count problem: solution
L3

= We store in the base cells (C ) a tuple of auxiliary
measures that help us correct the errors due to the duplicates
when rolling-up:

0 Cuyyip-Tra) - number of distinct trajectories of profile p
intersecting the cell

0 Cy)p-Cross-x: number of distinct trajectories of profile p
crossing the spatial border between C, ; ,,and Cg

0 Cyy)p-Cross-y: number of distinct trajectories of profile p
crossing the spatial border between C, , 4y, and C ).,

0 Cy)ip-Cross-t: number of distinct trajectories of profile p crossing

the temporal border bet e_?n Cixy)tip

Cell C(X,y),t,p




The distinct count problem: solution

23

= Let Cy v b€ a cell consisting of the union of two
adjacent cells (i.e. Ciy 1) 1p ICKi1y)tp )

= In order to compute the number of distinct
trajectories:

C(X,,y,),t,,p,.Traj = C(X,y),t’p.TraJ + C(Xﬂ’y),t,p.TraJ — C(X+1,y),t,p
.CroSss-X

Q

application of the well-known Inclusion/Exclusion
principle for sets: |AuUB |=|Al +|B| - | AnB|

BUT in some cases it holds that
Cixs1y)tp-CrOSs-x #| ANB| ®

Example: fast and agile trajectories



The distinct count problem: solution

33

Compute the number of distinct trajectories:

Cc

xX+1 ,y,t,p.CI'OSS-X

1

g

C

x+1,y,t,

1

p-173]

Cy41,,tp-Cross-x

0

o
Cx,y+1 tp Cx+1 JYy+1,tp x,y+1,t,p Cx+1 y+1,t,p
(a) (b)
Correct! Not Correct!

o7



Traffic density patterns (spatio-temporal aggregation)
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Real-time density estimation in urban areas

The senseable project: http://senseable.mit.edu/grazrealtime/ et
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A: A spatio-temporal sequential pattern

= A sequence of visited regions, frequently visited in
the specified order with similar transition times
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‘ T-Pattern discovery

1- Find Regions of Interest

2- Find similar Trajectory in space and time

trajectory

o /

-f@imxo,vo) )

3- Extract patterns:




T-Pattern: Extraction Process

:I'raj.éc\tor
Dataset

T-PATTERNS
' ees I8

Regions: bf
Interest
06




T-Patterns for trajectories

= A Trajectory Pattern (T-pattern) is a pair (s, a):
a0 8 =<(Xg,Y0)---r (XeoYi)> is a sequence of k+1 locations
o o = <aq,..., o> are the transition times (annotations)

also written as: g o ag,
(CUO;’UO) - (mlayl) O (mkayk)

= A T-pattern T, occurs in a trajectory if it contains a sub-
sequence S such that:

o each (x,y;) in Tp matches a point (x/,y;’) in S, and
o the transition times in Tp are similar to those in S

67



¢

Continuity iIssues (space & time)

= The same exact spatial location (x,y) usually never
occurs twice

= The same exact transition times usually do not occur
twice

= Solution: allow approximation
o a notion of spatial neighborhood

o a notion of temporal tolerance

63



T-Pattern: approximate occurrence

Two points match if one falls within a spatial
neighborhood N() of the other

Two transition times match if their temporal

differenceis <T Atlme
Input
trajectory
Example:
(CUOgyO) 0‘_1> (mlayl) =]
v
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T-Pattern: approximate occurrence

Two points match if one falls within a spatial
neighborhood N() of the other

Two transition times match if their temporal

differenceis <7 Atlme
Input
trajectory
Example:
(CUOgyO) — (mlayl) =]
Y
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T-Pattern: approximate occurrence

Two points match if one falls within a spatial
neighborhood N() of the other

Two transition times match if their temporal

differenceis <7

Example:

(CUOgyO) — (mlayl)

T

T L

N(X1,Y1)

— >~ _N(Xo,Yo)

A

time

Input
trajectory

71



Computing general T-Patterns

= T[-pattern mining can be mapped to a density
estimation problem over R3"1

o 2 dimensions for each (x,y) in the pattern (2n)
o 1 dimension for each transition (n-1)
= Density computed by

o mapping each sub-sequence of n points of each input
trajectory to R3n-"

o drawing an influence area for each point (composition of N()
and 1)

= Too computationally expensive, heuristics needed!!!
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Approach 1: predefined regions
= Fix a set of pre-defined regions of interest
u Map each (x,y) of the trajec’;ory to its region
;%1 =) 5 B8 8
®  sample pattern: Bus station —2™" Malll
a 7@



regions
= Detect significant regions thru spatial clustering

aaaaa d(x1,y1
A A

, 1 & 5  aroun d(x1,y1

»
1 1 1 1 1 1
>

u Map each (x,y) of the trajectory to its region

A

O

»
»

g O*O/j\w :> }.ﬂ

B sample pattern: around (x,, y,) —2™ 5 around (X,, Y,)
4



regions

= Dynamic discovering of dense regions

= Regions are located at each step of the pattern generation

20min.
= Sample pattern: (x,y)e A > (x,y)eB
v 1 N 4 1.Considering all
trajectories, Ais a
A At=20 min. cluster/dense region

2.Considering only

trajectories that visit A,

B is a cluster

3.”20 mins” is a typical
\_ time for pattern A>B

75 75

x1,y1) ¢

[ |
T

x3,y3
1

1X



Static Neighborhoods

Regions-of-Interest (Rol)

= Given a set of Regions of Interest R, define
the neighborhood of (x,y) as:

(

Ng(X,y) = A iIf AeR & (Xy) A
< .
& otherwise

\

o Neighbors <~ belong to the same region

o Points in no region have no neighbors

76



From ST-sequences to sequences

= With static neighborhoods Ng() ST-sequences
replaced by corresponding seqs of regions:

A T-pattern (s,a) Is contained in a ST-sequence S=<(X;,Y,t;), .-

(X, Yol)> < the TAS (s’,a) is contained in sequence S’

o S’ (resp. S') is obtained by mapping each element (x,y) of s
(resp. S) to Ni(x,y)

o TAS = Temporally annotated seq. of labels

= Eg.: so—s1 > Bos,

= Fosca Giannotti, Mirco Nanni, Dino Pedreschi. Efficient
Mining of Temporally Annotated Sequences. SIAM-DM
2006.

7



Translating ST-sequences

Example

S=<(x1,y1,t1), ..., (x5,y5,t5)>

4

<(R4,t1), (R3,t3), (R3,t4), (R1,t5)>

78



Static Neighborhoods: issue

= What if Rol are not known a priori?

= Solution: define heuristics for automatic Rol extraction
from data

= Wide range of heuristics:
o Geography-based (e.g., crossroads)

o Usage-based (e.g., popular places)

o Mixed (e.g., popular squares) h
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(a) input trajectories (b) density distribution (c¢) dense cells and extracted Rol

1. Impose a regular grid over space

2. Find dense cells (i.e., touched by many trajs.)

3. Coalesce cells into rectangles of bounded size

boe
80



Multi-step refinement Rol

Static Rol

o Cells approximate single points, regions group points
that are likely to form similar patterns

o Yet, they should regard only trajectories that support
the discovered pattern, not all database

Towards general T-patterns

o Check & update dense cells and regions of each
pattern against the trajectories that support it

o Approximation: Perform the update as step-wise
C refinement as patterns grow

81



Step-wise dynamic Rol

Example
A
“‘1._ * . .
(A, [D£F " Start computing regions
1 ST YT as basic Rol approach

‘_. '-.II. II \h 3 B ., . | |
. -rI - = Regions describe
\ : interesting places of

A | ' i‘ everybody
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Step-wise dynamic Rol

Example

Eﬂ = Focusing on A, we
) consider only the subset
of relevant trajectories

o = Regions can change
T (usually shrink/split)

X = They are interesting
only for who passes thru

A
83



Step-wise dynamic Rol

Example

‘l"A @
(D). tﬂ = Focusing on A->F (with
/AL some transition time),
F we further restrict the

set of trajectories

Involved

as far as possible

» m [he process is repeated

84



Sample T-patterns

(Data source: trucks} in Atr}ens — 273 trajectories)

-
o
----
o

t1in [400, 513 ]
t2in[41,61]




Related works on T-patterns

H. Cao, N. Mamoulis, and D. W. Cheung. Mining frequent spatio-
temporal sequential patterns. ICDM’05.

o patterns are in the form of sequences of trajectory segments, and their
approximate instances are searched in the data

P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving
clusters in spatio-temporal data. SSTD’05.

o patterns are in the form of moving regions within time intervals, such as
spatio-temporal cylinders or tubes. Instances are trajectory segments
fully contained in the moving regions

N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D.

Cheung. Mining, indexing, and querying historical spatiotemporal
data. KDD'04.

o maximal periodic patterns, treating discrete time and continuous spatial
locations that are discretized dynamically through density-based
clustering
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Related works on T-patterns

J. Yang and M. Hu. TrajPattern: Mining sequential patterns from
imprecise trajectories of mobile objects. EDBT’06.

o patterns in the form of sequences of locations are mined, and also the
uncertainty of object locations is considered from a probabilistic
viewpoint

H. Cao, N.Mamoulis, and D.W. Cheung. Discovery of collocation
episodes in spatiotemporal data.|CDM’06.

o input objects are associated to an object type (e.g., deers, pumas, etc.),
and then patterns describing the proximity (i.e., collocation) between
object types are mined

87



Ongoing work

Application-oriented assessments on large, real datasets
show that T-patterns are many and difficult to evaluate

o A starting point for further model construction, rather than a
final product

Simplification of output transition times

o The most complex info for end users
Study relations with

o Geographic background knowledge, such as points of
interests and road network

o Privacy issues — are T-patterns safe? Can we use T-patterns
to protect (anonymize) original data?

o Reasoning on trajectories and patterns 3



Mobility data mining

Trajectory Pattern Mining
Trajectory Classification

Trajectory Clustering




Location prediction based
on T-patterns

F. Pinelli, A. Monreale, R. Trasarti, F. Giannotti

Location prediction within the mobility data
analysis environment Daedalus

Workshop on Intelligent Transportation
Systems @MDM 2008




Location Prediction: Idea

T-Pattern extracts a set of local patterns from a global set of data.

Can we use these patterns to build a global model to predict the
next location?

B |
-"

Id:2 Id:3

Region:A Region:B

Support31 . Support28
'l

Id:6

Region; A RegionB

Support: 26 Support:31
Region: C Region:D Region:E
Support: 21 Support25 Support28

Region:E
Support21

Global model

Local patterns
(Ptree)

-:5 (T-pattern)
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Location Prediction: Building Ptree

T-Pattern results:

410, 15] >5[60,90] =8 s.10
410, 15] >5[2,7] 6 s. 8
1[100,120] —>21[90,110] >3 s.7
1[100,120] —>2[14,19] =3 s.15

[10, 15] [100, 120]

[60, 90] 2, 7] [90, 110] [14, 19]
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Location Prediction

The idea is to find the pattern that best matches a given trajectory
computing the puntual score for each admissible node in the Ptree and

then the score of a path on it.

dz2

d1

| pScore = supp(1)/d1

_‘  — pScore = supp(2)/d2

—— ¥
=

\

./

\

Space

Time
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Fxneriments
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Works on location prediction

= B. Xu and O. Wolfson. Time-series prediction with
applications to traffic and moving objects databases.
MobiDE, 2003.

= G. Yavas, D. Katsaros, O. Ulusoy, Y. Manolopoulos. A data
mining approach for location prediction in mobile
environments. Data Knowl. Eng., 54(2):121-146, 2005.

= M. Morzy. Prediction of moving object location based on
frequent trajectories. ISCIS 2006, LNCS 4263 Springer.

= M. Morzy. Mining frequent trajectories of moving objects for
location prediction. MLDM 2007, LNCS 4571 Springer.

= H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A hybrid
prediction model for moving objects. ICDE, 2008.
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Semantic annotation of mobility raw data

= many applications in the mobility domain require a
semantic interpretation of movement information

o traffic management, site evaluation, LBS,
advertisement

= physical trajectories can be retrieved by GPS loggers

= obtaining semantic trajectories is a challenge

96



Semantic Annotation of GPS Trajectories

Physical Trajectory:

e.g. GPS recording over
some period of time

Semantic Trajectory:

: places where a person stayed
means of transportation
combination of above elements for
higher-level description

way to work

A

bus stop

bus stop

. on foot

by bus 97



Semantic Annotation of GPS Trajectories

Barig Gug, Michael May, Yucel Saygin, Christine Korner

AGILE Conference, 2008




Related Work

many studies show inconsistencies between GPS trajectories and
travel diaries (Stopher 2007, Zmund 2003)

automatic annotation of trajectories using background information and
land uses (Axhausen 2003, Wolf et al. 2001, Wolf 2000) is limited in
several aspects

o focus on vehicular movement
o distinguish only few trip purposes
o ambiguous results possible due to land use data

o the purpose of a trip can be irrelevant to its destination

Axhausen, K.W., S. Schonfelder, J. Wolf, M. Oliveira and U. Samaga: 80 weeks of GPS-traces: Approaches to
enriching the trip information, Arbeitsbericht Verkehrs- und Raumplanung, 2003.

Wolf, J., Guensler R. and Bachman, W.: Elimination of the Travel Diary: An Experiment to Derive Trip Purpose
from GPS Travel Data, Transportation Research Record, 1768, 125-134, 2001

Wolf, J.: Using GPS data loggers to replace travel diaries in the collection of travel data, Dissertation, 2000
Zmud, J. and Wolf, J.: Identifying the Correlations of Trip Misreporting — Results fro the California Statewide
Household Travel Survey GPS Study. In: Proc. of the 10th International Conference on Travel Behaviour
Research, 2003.
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Aim

= ensure the accurate annotation of a trajectory by the user

o present the physical trajectory in geographic and temporal
context

o assist the user during the annotation process

o ensure consistency among users

= atool to visualize, annotate and store GPS trajectory data

100



Annotation Model

annotation model follows the concept of episodes (Mountain 2001)

semantic episodes are homogeneous sections of a trajectory with respect to

o purpose of the movement (e.g. working, shopping, transition)
o mode of transportation (e.g. by car, bus, foot)

“Trips” for aggregating episodes on a higher semantic level

o e.g.: all episodes on the way to work can be grouped into a common trip

Home W ork,
Shopping

¥ i L

Move miode: Foot Move mode: Foot Miove mode: B

Trips: e
An: Trarsition
Do ription: Going to work

EFIiSIIII:lES' Aan; Trarsition Aamn: shopping A Trarsition A Trargition A ok
' Mowe miode: Foot Move rode: Foot

Mountain, D. M. and Raper J. F.: ModellinggHluman Spatio-Temporal Behaviour: A Challenge for

Location-based Services. In: Proc. of the 6

International Conference on GeoComputation, 2001.
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Annotation Workflow

= Download data from GPS device

= Visualize trajectories using Google Maps

= Annotate on a “timeline”

=  Store annotation and GPS raw data on central database

download Google Maps
GPS data

send trajectory to
Google Maps
(JavaScript)

image map
| storeandload
— data in / from
db or file
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Interface Functionality

= Annotation

o Annotate on the timeline by partitioning trajectory into episodes
o Interface ensures consistency between users

o flexible

= “Placemarks”
o Users mark favorite places on the map

o Display visited placemarks on the timeline

) ) Set Episode Attributes R‘
Timeline 12:30:00 =
z26:00 [1zi2m00 [12:2800 [1zz3:00 [12:30:00 [12:] Move mode:|FOOT V‘ 00 [1z37o0 [1zamon 12:3
Trajectory - Accuracy info .
Trajectary - Mavement info Alm: mANSlT[GN V‘
Placemarks
Notes: oing to lunch
Episodes [ gong I—_—
Trips | ’ Sef Attribute ] [Cancel] —rivy lunch——————————————
gl
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I Trajectory Annotation

Data Conmection  Placemarks

GMAP  Preferences
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Il Trajectory Annotation

Data Conneckion  Placemarks GMAP  Preferences
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~ Track Display
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~Episode Control

Merge Epjsodes | Belete Episade | Split |

Colar by " Move Mode 1% Aim
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~ Animation Control
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Challenges

= Extend approach to
o automatic extraction of frequently visited places
o automatically derive the means of transportation

o provide the user with a possible annotation

= Use data with data mining and machine learning techniques
for automatic annotation/classification
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The Challenge of Trajectory Classification

= Build a predictive model that associates a trajectory
with a class from a given set

o E.g.. {car, motorbike, truck }

{ dangerous, non-dangerous }

= The model relies only on the movement described by
the trajectory

o Possibly with background knowledge about context

C 107



Features for trajectory classification

= Key phase in classification: represent trajectories through an
alphabet of behaviours

extract significant (frequent, discriminative, etc.) patterns
emerging from data

describe each trajectory in terms of which patterns it follows

extract rules correlating descriptive patterns and target label

From local patterns to global (predictive) models
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Works on trajectory classification

= Scarce results so far, e.g.

= Fraile, R. and Maybank, S. J., “Vehicle Trajectory
Approximation and Classification,” In Proc. 9th British
Machine Vision Conf., Southampton, UK, pp. 832—
840, Sept. 1998.
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Mobility data mining

Trajectory Pattern Mining
Trajectory Classification

Trajectory Clustering




Works on Trajectory Clustering

= Gaffney, S. and Smyth, P., Trajectory Clustering with Mixtures of
Regression Models, ACM SIGKDD 1999.

= Gaffney, S., Robertson, A., Smyth, P., Camargo, S., and Ghil, M.,
Probabilistic Clustering of Extratropical Cyclones Using
Regression Mixture Models, Tech. Rep. UCI-ICS 06-02, 2006.

= Nanni, M., Pedreschi, D. Time-focused clustering of trajectories of
moving objects. J. of Intelligent Information Systems, 2006.

= Lee, J.-G., Han, J., and Whang, K.-Y., Trajectory Clustering: A
Partition-and-Group Framework, SIGMOD 2007.

= Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, Andrienko.
Visually-driven analysis of movement data by progressive
clustering. J. of Information Visualization, 2008
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Which distance b

-l E .

- Average Euclidean distance

[ld(z,(1), 7, ()t

D(Tl’ TZ) |T - |-|- | distance between moving
objects 11 and 12 at time t

u “Synchronized” behaviour distance

Similar objects = almost always in the same place at the same time
u Computed on the whole trajectory

u Computational aspects:
Cost = O( [+1] + |2| ) (|7| = number of points in )
It is a metric => efficient indexing methos allowed
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Which kind of clustering?

= General requirements:

o Non-spherical clusters should be allowed

= E.g.: Atraffic jam along a road = “snake-shaped” cluster

o Tolerance to noise
o Low computational cost

o Applicability to complex, possibly non-vectorial data

= A suitable candidate: Density-based clustering
o OPTICS (Ankerstet al., SIGMOD 99

= =  T(rajectory)-OPTICS s i



Set of trajectories forming 4 clusters + noise (synthetic)

Tirne

Bes
=
[ax]

1
=
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T-OPTICS vs. HAC & K-means

T-OPTICS

objects reordering for distance distribution)

Tirne

Time

Y-axis

HAC-average

Heauis




Temporal focusing

Different time intervals can show different behaviours

o E.g.: objects that are close to each other within a time interval
can be much distant in other periods of time

The time interval becomes a parameter

o E.g.: rush hours vs. low traffic times

Already supported by the distance measure

o Just compute D(x,, 1,) |y onatimeinterval T < T

Problem: significant T' are not always known a priori

o An automated mechanism is needed to find them
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Temporal focusing

1. Provide a notion of interestingness to be associated
with time intervals

= Defined in terms of estimated quality of the clustering
extracted on the given time interval

2. Formalize the Temporal focusing task as an
optimization problem

= Discover the time interval that maximizes the interestingness
measure
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Interactive density-based trajectory clustering

Choose a distance function:

Clustered by OPTICS with distance threshold = 12000 and minimum number of objects = 3. Distance
function: Starts & end

 {Route similarity:

" Starts

" Ends

" Starts & end

" Starts, ends & midpaints

" Starts, ends & time steps

" Spatio temporal synchronization

" AVG Euclidean temporal based

" Route similarity & dynamics

0] | Cancel |

= More trajectory distance functions

= Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, Andrienko.
Visually-driven analysis of movement data by progressive

clustering. J. of Information Visualization, 2008
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Looking for frequent stops & moves

| Pt Ttk Gk
£3c I kv

L Glminen=
8T o
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Clusters of typical trips

- 51
L =5 F\%

cluster1: 60 objects
cluster 2: 32 ahjects {11, EI%)
cluster 3:10 objects (3.4%)

nolse 10 objects (3.4%)

-r}F‘“:.'_.f_" — \}f\\ S e O




Cluster 1: from work to home

Statistics about positions from
Trajectaries fram ADO70814_TA_H3
{alexa) (angle 30; stop time BO0;
radiuz 100)

T N starts (active)

' M ends (active)

... | Pieareais proportional to sum:
U

It ot ol
i, o e

L HGE s

Observation: the eastern route is chosen more often
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Cluster 2: from home to work

- Sonn-Hange at

- g

Statistics about positions fram
Trajectories from ADOF0814_TA_H3
(alexa) (anale 30; stop time 600;
radius 100)

M starts {active)

W nends (active)

_| Pie area is proportional to sum:

0.0
O 108.0
%

Observation: the eastern route is chosen much more often
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Progressive clustering

= Provide the analyst with a library of distance functions,
each with a clear meaning

= Step refined analysis through the successive
application of several distance measures

o Start with simple and efficient measures (common ends)

o Refine the obtained clusters with more sophisticated
functions
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Process Overview

Simple and very
efficient distance
measure

More selective and

particular distance

functions (or more
restrictive parameters)

Dataset

Clusters
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Mobility data analysis on a realistic GPS dataset

M
\ll

WIND Telecomunicazioni spa (major telecom
provider, GeoPKDD partner)

o GSM data (Handover data: aggregated flows between
adjacent cells)

Other collaborations:
o Comune di Milano, Mobility Agency

o Infoblu and OctoTelematics (GPS receivers on board of
cars with special insurance contract)

Xperience on a a dataset of
o 2 M positions,
o 17 K vehicles,

o 200 K trajectories

[T
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data on the map
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Progressive clustering

= First, create a large clusters of trajectories using the
“‘common ends” distance function,

= Concentrate on the (big) cluster of inward trajectories
(routes towards the city center)

= Refine by creating subclusters using a more
sophisticated distance function (route similarity)
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‘5 biggest (sub-)clusters of trajectories towards the city centre

Dark grey: moves occurring in trajectories from several clusters
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‘ Clustering trajectories on “route similarity”

Left: peripheral routes; middle: inward routes; right: outward routes.

= Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, Andrienko
Visually-driven analysis of movement data by progressive
clustering. J. of Information Visualization, 2008
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Challenges of visually-driven clustering

Progressive refinement through visually-driven
exploration

o Progressively complex similarity functions
Scalability

o Index structures to support efficient
neighborhood queries for trajectory clustering
(Nanni, Pedreschi, Pelekis, Theodoridis, 2008)

a Progressive clustering by sampling

Incremental clustering and concept drift
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Traffic mining on road network

~ Mining (typically clustering) of aggregate traffic data
over road networks




Network Traffic

Consider a fixed network consisting of a set of non-overlapping regions.

Regions could be

o road intersections (e.g. Via del Corso — Via del Tritone)

o landmarks of interest (e.g. Colosseo, Parlamento)

o oreven greater areas (e.g. Centro Storico Roma)

132
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Network Graph

The network is modeled as a directed graph G=(V,E)
o nodes V - regions

o edges E - direct connections between regions

RL R2 R3 R4
A y N y A

v \ 4 )\ 4 \ 4
RS R6 R7 RS
A y N A A

) 4 ) 4 ) 4
R9 R10 R11 R12
S A A s

) 4 ) 4 ) 4 ) 4
R13 R14 R15 R16

133 133



Capturing traffic through sensors

= Each edge e=(v, V') is equipped with sensor technology that captures
the movement from region v to region v'.

= Definition: The traffic series of a sensor s € S during a time period
[ts, t.] consists of the number of cars passed through this sensor
during this period, recorded at At intervals and ordered in time:

o TSg={v, t}, tg =t < t,, At=t-t_, the transmission rate of the sensor

100

I3

ts

ts+At

ts+2At
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Network Traffic

Traffic series of the network: TS = {TS_, s € S}
[ I Tim

t t t

R1 R2 R3 R4

e gy i) ][ e B~

135
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Works on Traffic Mining over Road Netwoks

= Xiaolei Li, Jiawei Han, Jae-Gil Lee and Hector Gonzalez. Traffic
Density-Based Discovery of Hot Routes in Road Networks. STD
2007 (Advances in Spatio-Temporal Databases).

= Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska,
John Paul Sondag. Adaptive Fastest Path Computation on a
Road Network: A Traffic Mining Approach. VLDB 2007

= Irene Ntoutsi, Nikos Mitsou, Gerasimos Marketos,Yannis
Theodoridis. Mining Traffic Flow in a Road Network: How does

lIIU l.ldlllb IIUW ? IlIl dUUIIIdI UI DUbIIIUbb IIILUIIIQUIIL;U dllJ Udtd

Mining, 2008
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Traffic relationships

Traffic propagation

- : Rl 12 ) i =
o traffic from e,, is propagated &L e »
tO 923 ) 4 ) 4 v
o This might indicate objects that R5 R6 R7 RS
continue moving in a highway — — — —
Traffic split/ spread RL = R2 = R3 R4
o traffic from e,, is split into e,; and ey : " )
e_ ) 4

o This might indicate objects that leave
a highway and follow different - . T

directions to their destination — — = R8
Traffic merge
i i = Je S rvE RS R4
o traffic to e,; merges traffic from e, = 829 ;
and eq, | - |
o This might indicate objects that enter
a highway from different directions R5 R6 R7 R8
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¢

A three-level clustering algorithm

= A divisive hierarchical clustering algorithm to detect different
behaviors of traffic flow

= Three different distance measures: dis, , (€1, €;), diSgpe(€1,
e,), disg, (€4, €,) capture different aspects of (dis-)similarity
of traffic flow between two edges/ road networks:

o edges with similar traffic shape // disgp,,e

o edges located nearby // disg

o edges with similar traffic values // dis

value

138 14388



A hierarchical view of the traffic edges

[L1: edges with similar traffic shape }

L2: edges with similar traffic shape that are
also nearby in the network

[L3: edges with similar traffic values J

1339



The original traffic network
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Clustering results — L,

o

imilar

Edges with the same color indicate network areas with s

traffic shape

441
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Clustering results — L,

o

o

(=]

Edges with the same color indicate network areas with

lar traffic shape and nearby
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Clustering results — L,

imilar

Edges with the same color indicate network areas with s

ilar traffic values

mi

traffic shape, nearby and with s

1323
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An archaeology of the present

The opportunity to discover, from the
digital traces of human activity, the
knowledge that makes us comprehend
timely and precisely the way we live, the
way we use our time and our land.

Mobility data mining
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From opportunities to threats

= Personal mobility data, as gathered by the
wireless networks, are extremely sensitive

= Their disclosure may represent a brutal violation of
the privacy protection rights, i.e., to keep
confidential

o the places we visit

a the places we live or work at

a the people we meet

a ...
146



Privacy-preserving mobility
data mining




The nalve scientist’s view

= Knowing the exact identity of individuals is not
needed for analytical purposes

o De-identified mobility data are enough to reconstruct
aggregate movement behaviour, pertaining to
groups of people.

= Reasoning coherent with European data
protection laws: personal data, once made
anonymous, are not subject to privacy law
restrictions

C = Is this reasoning correct?

148



Unfortunately not!

Making data (reasonably)a nonymous is not easy.

Sometimes, it is possible to reconstruct the exact
identities from the de-identified data.
Many famous example of re-identification

o Dalenius ...

o Governor of Massachusetts’ clinical records (Sweeney’s
experiment, 2001)

o America On Line August 2006 crisis: user re-identified
from search logs

Two main sources of danger:
o Many observations on the same “anonymous” subject

o Linking data, after joining separate datasets
149



‘Spatio-temporal linkage in Mobillity Data

[almost every day mon-fri

ld: _ _
a7 A ‘—W B between 7:45 — 8:15]
A’WB [almost every day mon-fri
between 17:45 — 18:15]

= By intersecting the phone directories of locations A and B we find
that only one individual lives in A and works in B.

m 1d:34567 = Prof. Smith

= Then you discover that on Saturday night 1d:34567 usually drives to
the city red lights district...
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Basic ideas for anonymity
preserving data analysis




How do people (try to) stay anonymous?

= either by camouflage

o pretending to be someone else or
somewhere else

= or by hiding in the crowd

o becoming indistinguishable among many
others
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Concepts for Location Privacy
Location Perturbation — Randomization

= The user location is represented
with a fake value

= Privacy protection is achieved
from the fact that the reported
location is false

= The accuracy and the amount of
privacy mainly depends on how
far is the reported location from
the exact location
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Concepts for Location Privacy

Spatial Cloaking — Generalization

= [he user exact location is
represented as a region that
Includes the exact user location

= An adversary does know that
the user is located in the region,
but has no clue where the user
IS exactly located

= The area of the region achieves
a trade-off between user privacy

and accuracy
7] 154



oncepts for Location Privacy
patio-ter mpora Nne

mo

ger neralization

= |n addition to the spatial - @ ,
dimension, generalize | :
also the temporal
dimension

Xy

w f.
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Concepts for Location Privacy
K-anonymity

User’s position is generalized to
a region containing at least k
users

The user is indistinguishable
among other k users

The area largely depends on the
surrounding environment.

A value of k =100 may resultin a
very small area downtown Hong |
Kong, or a very large area in the /

desert.

10-anonymity
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Privacy- preserving spatio-
temporal data mining

Trajectory randomization is risky!

1jecliory rai
J J

Trajectory anonymization
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A subtle re-identification attack

Disclosure Risks of Distance Preserving Data
Transformations

o Erkay Savas, Yucel Saygin, Emre Kaplan, and Thomas
B. Pedersen (Sabanci Univ., Istanbul)

What if the attacker knows:
o Some trajectories

o All mutual distances

Hyper-lateration

o Works in d dimensions
given d + 1 points

o If known trajectories are few,
then approximate!
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Privacy- preserving spatio-
temporal data mining

Trajectory randomization is risky!

1jecliory rai
J J

Trajectory anonymization
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Trajectory anonymization

Several variants developed in GeoPKDD:

o Abul, Bonchi, Nanni (Pisa KDD LAB). Int. Conf. Data
Engineering ICDE 2008

o Nergiz, Atzori, Saygin (Sabanci Univ. + Pisa KDD LAB).
2007 (submitted)

o Gkoulalas-Divanis, Verykios (Univ. Thessaly). 2007
(submitted)

o Pensa, Monreale, Pinelii, Pedreschi (Pisa KDD LAB)
PiLBA Int. Workshop on Privacy in Location-Based
Applications @ ESORICS 2008

Common goal: construct an anonymized version of a
trajectory dataset, preserving some target analytical
properties

Different techniques adopted 161



Example result: Never Walk Alone

Bonchi, Abul, Nanni. Never Walk Alone: Uncertainty for
Anonymity in Moving Objects Databases. ICDE 2008

Basic ideas:

o Trade uncertainty for anonymity: trajectories that are close up
the uncertainty threshold are indistinguishable

o Combine k-anonymity and perturbation
wo steps:
o Cluster trajectories into groups of k similar ones (removing

outliers)

o Perturb trajectories in a cluster so that each one is close to each
other up to the uncertainty threshold
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Trajectory cluster

Time
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Trajectory cluster

Time
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‘

(K,0) —anonymity set

Time

A

Volume of

k,)l'rajectory T
(radius=§ )

Anonymity Set
Bounding "tube"
{radius=g /2)

Y
/ /L

»

= K = minimum number of trajectories in the set

X

= O = uncertainty threshold (e.g., measurement error of GPS device)
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‘ Quality of anonymized datasets

= For reasonable values of K and 5, some
iInteresting analytical properties of the original
dataset are preserved by the anonymized

trajectories :

o density (aggregate count of mobile users in
the spatio-temporal dimension)

o T-patterns: NOT!

= Prototype trajectory anonymity toolkit
available

C 166



Pattern-Preserving k-Anonymization
of Sequences and its Application to
Mobility Data Mining

/'a'

Ruggero G. Pensa, Anna Monreale, Fabio Pinelli,
Dino Pedreschi

PiLBA 08 — Int. Workshop on Privacy in Location-
Based Applications @ ESORICS 2008




k-Anonymization of sequences

|ldea : each infrequent subsequence is potentially dangerous

Goal: providing an anonymized dataset of sequences, while
preserving frequent sequential pattern results

Given a dataset of sequences D

Provide a dataset of sequences D’ s.t.
1. D’ does not contain any k-infrequent subsequence

2. The collection of k-frequent pattern in D’ is « similar » to the
collection of k-frequent pattern in D
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k-Anonymization of sequences /2

= Prefix-tree based anonymization algorithm
1. Build the prefix-tree from D
2. Prune-away all k-infrequent subtrees

3. Re-build the tree by updating the support of existing
nodes belonging to pruned subsequences

4. Generate the anonymized dataset D’
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Dataset D
BC
ABCD
ABCD
BCE

Example (k=2)

AN
oS d A
l | |

Infrequent sequences:
BCE:1

Root Dataset D’
BC
/\ ABCD
ABCD
B:2  A:2 BC
C:2 B:2

(@]
N
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Experimental results (Milan traffic

Pattern support
Pattern collection size

0.039 dataset
T T T T T T T
SIM1. —+—
1L SIM2 -~ )
° K e ¥ p
. ¥

04 | : i
02f I/ .

0_ | | | | | | | | |

0. 100. 200 300. 400 500 600. 700 800. 900 1000.
K values.
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Key open challenges

Define an acceptable formal measure of
anonymity protection:

o Probability of re-identification (in a given
context)

o A (technically supported) juridical issue!
Sampling: a necessity and an opportunity!

o Necessary for performance/feasibiliy of data
mining from massive mobility datasets

o Good for anonymity (re-identification probability
decreases)
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Visual analytics for mobility
data




Visual analytics for mobility data

= A synergy of
o interactive visualization,
o database processing and

o data mining

= helps to make sense from large amounts of movement
data by interactive, visually-driven exploratory data
analysis

= Prototype created in GeoPKDD.eu, based on the
Common-GIS system developed at Fraunhofer (Gennady
and Natalia Andrienko)
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Major technigues

= Aggregation:

= Traffic-oriented view: by time intervals; by space compartments; by
movement direction; by other point-related movement attributes

= Trajectory-oriented view: by time intervals; by general (trajectory-related)
attributes; by starts and ends; by route similarity (through clustering)

= Summarization:

= Numeric: count, mean, median, ...

= Spatial: aggregated moves

= Visualization and interaction:

= Multiple coordinated views: animated and static maps, non-cartographic
displays

= Interactive filtering: by time, space, cluster membership, attribute values

= Dynamic aggregates reacting to the filtering

175




Traffic density patterns (spatio-temporal aggregation)
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Examples of clusters of trajectories
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Summarized representation of a bunch of
trajectories

1) Trajectories — sequences of “moves”

“ ” Man In_o 4 Liz
between “places sroal / =
=

2) For each pair of “places” compute the moves 1
number of “moves” Stan, i
3) Represent by vectors (arrows) with
proportional widths L

Major flow
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Defining “places”

1) Extract characteristic points from all trajectories

2) Riiild areas (e a circles) aroilind aroiins of noints and isolated noints
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Dynamic aggregation of moves

Each aggregated move is an active object reacting to selection (filtering) of the source data by changing the thickness,
color, or visibility of the respective vector.
In particular, aggregated moves react to selection of clusters.
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But: not always is a cluster clearly seen...
Possible solution: filter aggreqgated moves by the

v cluster 1 number of elementary moves (i.e. trajectory fragments)
W cluster 2 ieinreinn they include
v cluster 3
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B T MRS e - Aggregated moves occurring in
An example of a cluster of trajectories Aggregated moves; all are visible : 20 trajectories or more

Aggregated moves occurring in
15 trajectories or more

Aggregated moves occurring in
10 trajectories or more

Aggregated moves occurring in
5 trajectories or more
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Conclusions




Privacy-preserving Mobility Data Mining

ctrivine fAr A WITN Wi ctfriatiAan
OQULITVCO 1V A VVIIITVVIIT SiILtualivulli

= Obtaining the advantages of collective mobility
knowledge without disclosing inadvertently any
individual mobility knowledge.

= A word of wisdom: solutions can only be
obtained via an alliance of technology, legal
regulations, and social norms (Rakesh Agrawal)

= GeoPKDD.eu is in the mix, shaping up the area
of PP mobility data mining

= Challenge: UbiComp will flood us with new
complex data (in a decentralized setting)

o data miners have only begun to scratch the
C surface of this problem
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... trying to accomplish a long-time dream

CARTE FIGURATIVE des pertes successives en hommey de PArmee Frangaise dans la campagne de Bussie 1§12-1813.

_ﬂruu'pP:r M Minard, r.ujmuur Genedral der Fonts et Chavssées on retraste.
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The representation of Napoleon’s Russian campaign of 1812 produced by Charles Joseph Minard in 1861
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