Logical and Relational Learning A novel synthesis

Luc De Raedt luc.deraedt@cs.kuleuven.be

ECML/PKDD 2008

What is Logical and Relational Learning ?

They all study the same problem

The Problem

Learning from structured data, involving

- objects, and
- relationships amongst them

and possibly

• using background knowledge

Purpose of this talk

- Relational learning is sometimes viewed as a new problem, but it has a long history
- Emphasize the role of symbolic representations (graphs & logic) and knowledge
- A modern view
 - logic as a toolbox for machine learning
- Overview of some of the available tools and techniques
- Illustration of their use in some of our recent work

Overview

MOTIVATION REPRESENTATIONS OF THE DATA The LOGIC of LEARNING METHODOLOGY and SYSTEMS LOGIC, RELATIONS and PROBABILITY ILLUSTRATION in LINK MINING

The MOTIVATION

Case I: Structure Activity Relationship Prediction

[Srinivasan et al.AlJ 96]

General Purpose Logic Learning System

Uses and Produces Knowledge

Using and Producing Knowledge

LRL can use and produce knowledge

Result of learning task is understandable and interpretable

Logical and relational learning algorithms can use background knowledge, e.g. ring structures

Questions to ask

How to support the life scientist in using and discovering new knowledge in the network ?

- Is gene X involved in disease Y ?
- Should there be a link between gene X and disease Y ? If so, what type of link ?
- What is the probability that gene X is connected to disease Y ?
- Which genes are similar to X w.r.t. disease Y?
- Which part of the network provides the most information (network extraction) ?
- ...

- *Travian*: A massively multiplayer real-time strategy game
 - Commercial game run by TravianGames GmbH
 - ~3.000.000 players spread over different "worlds"
 - ~25.000 players in one world

[Thon et al. ECML 08]

Alliance 2 Allian

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

[Thon, Landwehr, De Raedt, ECML08]

924

1024

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

Alliance 2

1002

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

Emerging Data Sets

In many application areas :

- vision, surveillance, activity recognition, robotics, ...
- data in relational format are becoming available
- use of knowledge and reasoning is essential
- in Travian -- ako STRIPS representation

GerHome Example

Action and Activity Learning

(courtesy of Francois Bremond, INRIA-Sophia-Antipolis)

http://www-sop.inria.fr/orion/personnel/Francois.Bremond/topicsText/gerhomeProject.html

The LRL Problem

Learning from structured data, involving

- objects, and relationships amongst them
- possibly using background knowledge

Very often :

- examples are small graphs or elements of a large network (possibly evolving over time)
- many different types of applications and challenges

REPRESENTING the DATA

Represent the data Hierarchy

	at	at	at	att	at
example					

single-table single-tuple attribute-value

	at	at	at	at	at
exampl					
exampl					
exampl					

single-table multiple-tuple multi-instance

2 relations edge / vertex graphs & networks multi-table multiple-tuple relational

Attribute-Value

	at	at	at	att	at
example					

single-table single-tuple attribute-value Traditional Setting in Machine Learning (cf. standard tools like Weka)

Multi-Instance [Dietterich et al.Al] 96]

	at	at	at	at	at
examol					
exampl					
exampl					

An example is positive if there exists a tuple in the example that satisfies particular properties

single-table multiple-tuple multi-instance Boundary case between relational and propositional learning.

A lot of interest in past 10 years

Applications: vision, chemo-informatics, ...

atom(1,cl). atom(2,c). atom(3,c). atom(4,c). atom(5,c). atom(6,c). atom(7,c). atom(8,o).

•••

bond(3,4,s). bond(1,2,s). bond(2,3,d).

•••

2 relations edge / vertex graphs & networks

atom(1,cl,21,0.297) atom(2,c,21,0187) atom(3,c,21,-0.143) atom(4,c,21,-0.143) atom(5,c,21,-0.143) atom(6,c,21,-0.143) atom(7,c,21,-0.143) atom(8,o,52,0.98)

Note: add identifier for molecule

bond(3,4,s).

bond(1,2,s).

bond(2,3,d).

•••

Encoding Knowledge

Use background knowledge in form of rules

• encode hierarchies

halogen(A):- atom(X,f) halogen(A):- atom(X,cl) halogen(A):- atom(X,br) halogen(A):- atom(X,i) halogen(A):- atom(X,as) •encode functional group benzene-ring :- ...

intentional versus extentional encodings

Relational Representation

multi-table multiple-tuple relational

Relational versus Graphs

Advantages Relational

- background knowledge in the form of rules, ontologies, features, ...
- relations of arity > 2 (but hypergraphs)
- graphs capture structure but annotations with many features/labels is non-trivial

Advantages Graphs

- efficiency and scalability
- full relational is more complex
- matrix operations

The Hierarchy

	at	at	at	att	at
example					

single-table single-tuple attribute-value

	at	at	at	at	at
examol					
exampl					
exampl					

single-table multiple-tuple multi-instance

2 relations edge / vertex graphs & networks multi-table multiple-tuple relational

35

Two questions

UPGRADING : Can we develop systems that work with richer representations (starting from systems for simpler representations)?

PROPOSITIONALISATION: Can we change the representation from richer representations to simpler ones ? (So we can use systems working with simpler representations)

Sometimes uses **AGGREGATION**

Representational Hierarchy -- Systems

	at	at	at	att	at		at	at	at	at	at	Ħ	+	$\left \right $
example						exampl	ац. 	<u>a</u> .	al	۵۱.	aL	Ħ		
example													Ħ	
example						exampl						Ħ		
example												₩		
example														
example						exampl								
example														
example												-i-		
example														

single-table single-tuple attribute-value single-table multiple-tuple multi-instance 2 relations edge / vertex graphs & networks multi-table multiple-tuple relational

The Upgrading Methodology

Start from existing system for simpler representation

Extend it for use with richer representation (while trying to keep the original system as a special case)

Illustrations follow.

Learning Tasks

- rule-learning & decision trees [Quinlan 90], [Blockeel 96]
- frequent and local pattern mining [Dehaspe 98]
- distance-based learning (clustering & instance-based learning) [Horvath, 01], [Ramon 00]
- probabilistic modeling (cf. statistical relational learning)
- reinforcement learning [Dzeroski et al. 01]
- kernel and support vector methods

Logical and relational representations can (and have been) used for all learning tasks and techniques

Propositionalization

single-table single-tuple attribute-value single-table multiple-tuple multi-instance

2 relations edge / vertex graphs & networks multi-table multiple-tuple relational

Downgrading the data ?

Propositionalization

PARTICIPANT Table

NAME	JOB	COMPANY	PARTY	R_NUMBER
adams	researcher	scuf	no	23
blake	president	j∨t	yes	5
king	manager	ucro	no	78
miller	manager	j∨t	yes	14
scott	researcher	scuf	yes	94
turner	researcher	ucro	no	81

COMPANY Table									
COMPANY	TYPE								
jvt	commercial								
scuf	university								
ucro	university								

COURSE Table											
COURSE	LENGTH	TYPE									
CSO	2	introductory									
erm	3	introductory									
so2	4	introductory									
srw	3	advanced									

SUBSCRIPTION Table									
NAME	COURSE								
adams	erm								
adams	so2								
adams	srw								
blake	CSO								
blake	erm								
king	CSO								
king	erm								
king	so2								
king	srw								
miller	so2								
scott	erm								
scott	srw								
turner	so2								
turner	srw								

Table-based Propositionalization

Define new relation

p(N,J,C,P,R,Co,L) :participant(N,J,C,P,R),
subscribes(N,Co),
length(Co,L).

PARTICIPANT Table

NAME	JOB	COMPANY	PARTY	R_NUMBER
adams	researcher	scuf	no	23
blake	president	j∨t	yes	5
king	manager	ucro	no	78
miller	manager	j∨t	yes	14
scott	researcher	scuf	yes	94
turner	researcher	ucro	no	81

COURSE	COURSE Table										
COURSE	LENGTH	TYPE									
CSO	2	introductory									
erm	3	introductory									
so2	4	introductory									
srw	3	advanced									

Multi-relational \rightarrow multi-instance under certain conditions \rightarrow attribute-value

SUBSC	SUBSCRIPTION Table									
NAME	COURSE									
adams	erm									
adams	so2									
adams	srw									
blake	CSO									
blake	erm									
king	CSO									
king	erm									
king	so2									
king	srw									
miller	so2									
scott	erm									
scott	srw									

Query-based Propositionalization

Compute a set of relevant features or queries.

Typically, (variant of) local pattern mining.

E.g. find all frequent or correlated subgraphs.

Use each feature as boolean attribute.

Good results in graph classification (using SVMs).

43

Aggregation

	att	att	att	att	att			at	at	at	at	at
tuple							tuple					
tuple												
tuple							tuple					
tuple												
tuple												
tuple						+	tuple					
tuple												
tuple												
tuple												

from multi-tuple relations to single-tuple

Aggregation

Introduce new attribute

For instance :

 number of courses followed

SUBSC	SUBSCRIPTION Table									
NAME	COURSE									
adams	erm									
adams	so2									
adams	srw									
blake	CSO									
blake	erm									
king	CSO									
king	erm									
king	so2									
king	srw									
miller	so2									
scott	erm									
scott	srw									
turner	so2									
turner	srw									

adams, 3

multi-instance/tuple \rightarrow attribute-value

Propositionalization and Aggregation

Often useful to reduce more expressive representation to simpler one but almost always results in information loss or combinatorial explosion

Shifts the problem

• how to find the right features / attributes

One example

- features = paths in a graph (for instance)
- which ones to select ?

still requires "relational" methods

The LOGIC of LEARNING Coverage and Generality

Typical Machine Learning Problem

- a set of examples E
- a background theory **B**
- a logic language Le to represent examples
- a logic language Lh to represent hypotheses
- a covers relation on Le x Lh
- •a loss function

Find

 A hypothesis h in Lh that minimizes the loss function w.r.t. the examples E taking B into account

	The Hypothesis Language											
Prolog	OV	VL	First Order Logic									
Graphs	SQL	D	escription Logic									
Relational C	Calculi	Enti	ity-Relationship Model									
	Choice probably not that important though implementation & manipulation											

Covers Relation

Covers Relation

Subgraph Isomorphism (bijection) or Homomorphism (injection)

Coverage

...

atom(1,cl).atom(2,c).atom(3,c).atom(4,c).atom(5,c).atom(6,c).bond(3,4,s).atom(7,c).bond(1,2,s).atom(8,o).

...

positive :- atom(A,c),
 atom(B,c),
 bond(A,B,s),

....

Ol-subsumption (bijection) or theta-subsumption (injection)

Coverage

...

atom(1,cl). atom(2,c). atom(3,c). atom(4,c). atom(4,c). atom(5,c). atom(6,c). bond(3,4,s). atom(7,c). bond(1,2,s). atom(8,o). bond(2,3,d).

...

positive :- halogen(A), halogen(B), bond(A,B,s),

....

halogen(A):- atom(X,f) halogen(A):- atom(X,cl) halogen(A):- atom(X,br) halogen(A):- atom(X,i) halogen(A):- atom(X,as)

Deduction

Generality Relation

An essential component of Symbolic Learning systems

G is more general than S if all examples covered by S are also covered by G

Using graphs

subgraph isomorphism or homeomorphism

In logic

• theta or OI subsumption, in general $G \models S$

Generality Relation

positive :- $atom(X,c) \models positive :- atom(X,c), atom(Y,o)$

but also

positive :- halogen(X) halogen(X) :- atom(X,c)

F positive :- atom(X,c)

G ⊧ S

S follows *deductively* from G G follows *inductively* from S therefore induction is the *inverse* of deduction this is an operational point of view because there are many deductive operators ⊢ that implement ⊧ take any deductive operator and invert it and one obtains an inductive operator

Various frameworks for generality

Depending on the form of G and S single clause clausal theory
Relative to a background theory B U G ⊧ S
Depending on the choice of ⊦ to invert subsumption (most popular)

Subsumption in 3 Steps

Subsumption ~ generalization of graph morphisms

- I. propositional
- 2. atoms
- 3. clauses (rules)

Logical Atoms

Does g=participant(adams, X, kul) match s=participant(adams,researcher, kul) ?

Yes, because there is a substitution $\theta = \{X | researcher\}$ such that $g\theta = s$

more complicated, account for variable unification

Subsumption in Clauses

Combine propositional and atomic subsumption.

G subsumes S if and only if there is a substitution θ such that $G\theta \subseteq S$.

Graph - homeomorphism as special case

Subsumption Relation

Subgraph Isomorphism (bijection) or Homomorphism (injection)

 $\theta = \{G/8, A/5, B/4, C/3, D/2, E/7, F/6\}$

Subsumption

atom(1,cl).atom(2,c).atom(3,c).atom(4,c).atom(5,c).atom(6,c).bond(3,4,s).atom(7,c).bond(1,2,s).atom(8,o).

...

 $\theta = \{G/8, A/5, B/4, C/3, D/2, E/7, F/6\}$

...

positive :- atom(A,c), atom(B,c), bond(A,B,s),

....

Ol-subsumption (bijection) or theta-subsumption (injection)

63

Subsumption

Well-understood and studied, but complicated.

Testing subsumption (and subgraphismorphism) is NP-complete

Infinite chains (up and downwards exist)

Syntactic variants exist when working with homeomorphism (but not for isomorphism).

Computation of lub (lgg) and glb

Theta-subsumption lattice

Using Generality

To define the search space that is traversed. Cf. frequent item-set mining, concept-learning.

Generality

Different types of search strategy:

all solutions (freq. item-sets), top-k solutions (branch and bound algo.), heuristic (concept-learning)

G ⊧ S

Generality relations and refinement operators are wellunderstood; they apply to simpler structures such as graphs (canonical form -- lexicographic orders)

Refinement

Graphs : Adding edges

Relational learning Adding literals bond(A,B,s), bond(B,C,d), ...

SYSTEMS & METHODOLOGY

Representational Hierarchy -- Systems

	at	at	at	att	at			at	at	at	at	at
example							exampl					
example						-						
example							exampl					
example												
example												
example							exampl					
example												
example												
example												

single-table single-tuple attribute-value single-table multiple-tuple multi-instance

2 relations edge / vertex graphs & networks multi-table multiple-tuple relational

UPGRADING

Two messages

LRL applies essentially to any machine learning and data mining task, not just concept-learning

• distance based learning, clustering, descriptive learning, reinforcement learning, bayesian approaches

there is a recipe that is being used to derive new LRL algorithms on the basis of propositional ones

• not the only way to LRL

Learning Tasks

- rule-learning & decision trees [Quinlan 90], [Blockeel 96]
- frequent and local pattern mining [Dehaspe 98]
- distance-based learning (clustering & instance-based learning) [Horvath, 01], [Ramon 00]
- probabilistic modeling (cf. statistical relational learning)
- reinforcement learning [Dzeroski et al. 01]
- kernel and support vector methods

Logical and relational representations can (and have been) used for all learning tasks and techniques

The RECIPE

Start from well-known propositional learning system

Modify representation and operators

- e.g. generalization/specialization operator, similarity measure, ...
- often use theta-subsumption as framework for generality

Build new system, retain as much as possible from propositional one

LRL Systems and techniques

FOIL ~ CN2 – Rule Learning (Quinlan MLJ 90)
Tilde ~ C4.5 – Decision Tree Learning (Blockeel & DR AIJ 98)
Warmr ~ Apriori – Association rule learning (Dehaspe 98)
Progol ~~ AQ – Rule learning (Muggleton NGC 95)
Graph miners ...

A case : FOIL tailment -- the setting $B \cup H \models e$

Learning from entailment -- the setting

Given

molecule(225). bond(225,f1_1,f1_2,7). logmutag(225,0.64). bond(225,f1_2,f1_3,7). background lumo(225,-1.785). bond(225,f1_3,f1_4,7). logp(225,1.01). bond(225,f1_4,f1_5,7). nitro(225,[f1_4,f1_8,f1_10,f1_9]). bond(225,f1_5,f1_1,7). atom(225,f1_1,c,21,0.187). bond(225,f1_8,f1_9,2). atom(225,f1_2,c,21,-0.143). bond(225,f1_8,f1_10,2). atom(225,f1_3,c,21,-0.143). bond(225,f1_1,f1_11,1). atom(225,f1_4,c,21,-0.013). bond(225,f1_11,f1_12,2). atom(225,f1_5,o,52,-0.043). bond(225,f1_11,f1_13,1). ring_size_5(225, [f1_5, f1_1, f1_2, f1_3, f1_4]). hetero_aromatic_5_ring(225, [f1_5, f1_1, f1_2, f1_3, f1_4]). examples mutagenic(225), ... $\mathbf{B} \cup \mathbf{H} \models \mathbf{e}$ Find mutagenic(M) := nitro(M,R1), logp(M,C), C > 1.

rules

mutagenic(X) :- atom(X,A,c),charge(A,0.45)

mutagenic(X) :- atom(X,A,c),bond(A,B)

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

FOIL

Key ideas / contributions

- determine the representation of examples and hypotheses
- select the right type of coverage and generality (subsumption)
- keep existing algorithm (CN2) but replace operators
- keep search strategy
- fast implementation.

Tilde

Logical Decision Trees (Blockeel & De Raedt AIJ 98)

A logical decision tree

IF triangle(T1), in(T1, T2), triangle(T2) THEN Class = yes ELSIF triangle(T1), in(T1, T2) THEN Class = no ELSIF triangle(T1) THEN Class = no ELSIF circle(C) THEN Class = no ELSE Class = yes

The RECIPE

Relevant for ALL levels of the hierarchy

Still being applied across data mining,

• mining from graphs, trees, and sequences

Works in both directions

• upgrading and downgrading !!!

Mining from graphs or trees as downgraded Relational Learning

Many of the same problems / solutions apply to graphs as to relational representations

From Upgrading to Downgrading

Work at the right level of representation

trade-off between expressivity & efficiency

The **old** challenge: **upgrade** learning techniques for simpler representations to richer ones.

The **new** challenge: **downgrade** more expressive ones to simpler ones for efficiency and scalability; e.g. graph miners.

Note: systems using rich representations form a **baseline**, and can be used to test out ideas.

Relevant also for ALL machine learning and data mining tasks

Learning Tasks

Logical and relational representations can (and have been) used for all learning tasks and techniques

- rule-learning & decision trees
- frequent and local pattern mining
- distance-based learning (clustering & instance-based learning)
- probabilistic modeling (cf. statistical relational learning)
- reinforcement learning
- kernel and support vector methods

Typical Machine Learning Problem

- a set of examples E
- a background theory **B**
- a logic language Le to represent examples
- a logic language Lh to represent hypotheses
- a covers relation on Le x Lh
- •a loss function

Find

 A hypothesis h in Lh that minimizes the loss function w.r.t. the examples E taking B into account

Three possible SETTINGS

Learning from entailment (FOIL)

• covers(H,e) iff H |= e

Learning from interpretations

• covers(H,e) iff e is a model for H

Learning from proofs or traces.

• covers(H,e) iff e is proof given H

The setting can matter a lot A Knowledge Representation Issue

Learning from interpretations

Examples as "relational state descriptions"

- {triangle(t1), circle(c1), inside(c1,t1)}
- {triangle(t3), triangle(t4), inside(t3,t4), circle(c5)}

Hypotheses consist of properties / constraints

- triangle(T) :- circle(C), inside(T,C)
- IF there is a circle C inside an object TTHEN T is a triangle
- false :- circle(C1), circle(C2), inside(C1,C2)
- NO circle is inside another circle ...

Learning from interpretations

Examples

• Positive: { human(luc), human(lieve), male(luc), female(lieve)}

Hypothesis (positives only)

(maximally specific that covers example)

- human(X) :- female(X)
- human(X) :- male(X)
- false :- male(X), female(X)
- male(X); female(X) :- human(X)

OFTEN used for finding INTEGRITY CONSTRAINTS / FREQ. PATTERN MINING

Learning from Proofs

Used in Treebank Grammar Learning & Program Synthesis

Use of different Settings

Learning from entailment

Different settings provide different levels of information about target program (cf. De Raedt, AIJ 97)

Information

Learning Ces/proofs – Typically used for hard problems, when other settings seem to fail or fail to scale up – E.g., program synthesis from examples, grammar induction, multiple predicate learning

LOGIC, RELATIONS and PROBABILITY

Joint work with Kristian Kersting et al.

Statistical Relational Learning

Logic and relations alone are often insufficient

- but can be combined with probabilistic reasoning and models
- use logic as a toolbox

Some SRL formalisms

PLL: What Changes ?

Clauses annotated with probability labels

• E.g. in Sato's Prism, Eisele and Muggleton's SLPs, Kersting and De Raedt's BLPs, ...

Prob. covers relation $covers(e, H \cup B) = P(e \mid H, B)$

• Probability distribution P over the different values e can take; so far only (true,false)

Knowledge representation issue

- Define probability distribution on examples / individuals
- What are these examples / individuals ? [cf. SETTINGS]

Two key approaches

- Logical Probability Models [MLNs, PRMs, BLPs, ...]
 - Knowledge Based Model Construction, use (clausal) logic as a template
 - generate graphical model on which to perform probabilistic inference and learning
- Probabilistic Logical Models [ICL, PRISM, ProbLog, SLPs, ...]
 - Annotate logic with probabilities
 - perform inference and learning in logic
 - illustrate the idea of upgrading

Probabilistic generative SRL Problem

Given

- a set of examples E
- a background theory **B**
- a language Le to represent examples
- a language Lh to represent hypotheses
- a probabilistic covers **P** relation on Le x Lh

Find

 hypothesis h* maximizing some score based on the probabilistic covers relation; often some kind of maximum likelihood

PLL:Three Issues

• Defining Lh and **P**

- Clauses + Probability Labels
- Learning Methods
 - Parameter Estimation
 - Learning probability labels for fixed clauses
 - Structure learning
 - Learning both components

PLL: Three Settings

- Probabilistic learning from interpretations
 - Bayesian logic programs, Koller's PRMs, Domingos' MLNs, Vennekens' LPADs
- Probabilistic learning from entailment
 - Eisele and Muggleton's Stochastic Logic Programs, Sato's Prism, Poole's ICL, De Raedt et al.'s ProbLog
- Probabilistic learning from proofs
 - Learning the structure of SLPs; a tree-bank grammar based approach, Anderson et al.'s RMMs, Kersting et al.

Learning from interpretations

- Possible Worlds -- Knowledge Based Model Construction
- Bayesian logic programs (Kersting & De Raedt)
- Markov Logic (Richardson & Domingos)
- Probabilistic Relational Models (Getoor, Koller, et al.)
- Relational Bayesian Nets (Jaeger), ...

Bayesian Networks

P(E,B,A,J,M) = P(E).P(B).P(A|E).P(A|B).P(J|A).P(M|A)

earthquake. burglary. alarm :- earthquake, burglary. marycalls :- alarm. johncalls:- alarm. INTERPRETATION STATE/DESCRIPTION {A, ¬E, ¬B, J, M}

Probabilistic Relational Models (PRMs)

[Getoor,Koller, Pfeffer]

Probabilistic Relational Models (PRMs) father (Father, Person). (Father) (Mother) mother (Mother, Person). Bloodtype Bloodtype M-chromosome M-chromosome P-chromosome P-chromosome Person Person bt(Person,BT). M-chromosome P-chromosome pc(Person, PC). mc(Person, MC). Bloodtype Person Dependencies (CPDs associated with): bt(Person, BT) :- pc(Person, PC), mc(Person, MC). pc(Person, PC) :- pc father(Father, PCf), mc father(Father, MCf). Viēw : pc father(Person, PCf) | father(Father, Person), pc(Father, PC). • • •

Knowledge Based Model Construction

Extension + Intension =>Probabilistic Model

Advantages

same intension used for multiple extensions

parameters are being shared / tied together

unification is essential

learning becomes feasible

Typical use includes

prob. inference P(Q | E), P(bt(mary) | bt(john) =o-)

max. likelihood parameter estimation & structure learning

Bayesian Logic Programs

Prolog and Bayesian Nets as Special Case

Balios Tool

Learning from Proofs Probabilistic Context Free Grammars

1.0 : S -> NP, VP 1.0 : NP -> Art, Noun 0.6 : Art -> a 0.4 : Art -> the 0.1 : Noun -> turtle 0.1 : Noun -> turtles ... 0.5 : VP -> Verb 0.5 : VP -> Verb, NP 0.05 : Verb -> sleep 0.05 : Verb -> sleeps

. . . .

P(parse tree) = 1x1x.5x.1x.4x.05

PCFGs

 $P(parse \ tree) = \prod_{i} p_{i}^{c_{i}}$ where p_{i} is the probability of rule iand c_{i} the number of times it is used in the parse tree

 $P(sentence) = \sum_{p:parsetree} P(p)$

Observe that derivations always succeed, that is $S \to T, Q$ and $T \to R, U$ always yields $S \to R, U, Q$

Probabilistic DCG

1.0 S -> NP(Num), VP(Num) 1.0 NP(Num) -> Art(Num), Noun(Num) 0.6 Art(sing) -> a 0.2 Art(sing) -> the 0.2 Art(plur) -> the 0.1 Noun(sing) -> turtle 0.1 Noun(plur) -> turtles ... 0.5 VP(Num) -> Verb(Num) 0.5 VP(Num) -> Verb(Num), NP(Num) 0.05 Verb(sing) -> sleep 0.05 Verb(plur) -> sleeps

P(derivation tree) = 1x1x.5x.1x .2 x.05

1/3 1/2

SLP notation sentence(A, B) :- noun_phrase(C, A, D), verb_phrase(C, D, B). noun_phrase(A, B, C) :- article(A, B, D), noun(A, D, C). verb_phrase(A, B, C) :- intransitive_verb(A, B, C). article(singular, A, B) :- terminal(A, a, B). article(singular, A, B) :- terminal(A, the, B). article(plural, A, B) :- terminal(A, the, B). noun(singular, A, B) :- terminal(A, turtle, B). noun(plural, A, B) :- terminal(A, turtles, B). intransitive_verb(singular, A, B) :- terminal(A, sleeps, B). intransitive_verb(plural, A, B) :- terminal(A, sleep, B). terminal([A|B],A,B).

Probabilistic DCG

SLPs

 $P_d(derivation) = \prod_i p_i^{c_i}$ where p_i is the probability of rule iand c_i the number of times it is used in the parse tree

Observe that some derivations now fail due to unification, that $np(Num) \rightarrow art(Num), noun(Num)$ and $art(sing) \rightarrow a$ $noun(plural) \rightarrow turtles$

Normalization necessary $P_s(proof) = \frac{P_d(proof)}{\sum_i P_d(proof_i)}$

Example Application

- Consider traversing a university website
- Pages are characterized by predicate department(cs,nebel) denotes the page of cs following the link to nebel
- Rules applied would be of the form department(cs,nebel) :prof(nebel), in(cs), co(ai), lecturer(nebel,ai).
 pagetype1(t1,t2) :type1(t1), type2(t2), type3(t3), pagetype2(t2,t3)
- SLP models probabilities over traces / proofs / web logs department(cs,nebel), lecturer(nebel,ai007), course(ai007,burgard), ...

This is actually a Logical Markov Model

Logical Markov Model

An interesting application exist using RMMs [Anderson and Domingos, KDD 03]

Probabilities on Proofs

Two views

- stochastic logic programs define a prob. distribution over atoms for a given predicate.
 - The sum of the probabilities = 1.
 - Sampling. Like in probabilistic grammars.
- distribution semantics define a prob. distribution over possible worlds/interpretations. Degree of belief.

Distribution Semantics

- Due to Taisuke Sato
 - provides a natural basis for many probabilistic logics
 - PRISM (Sato & Kameya), PHA & ICL (Poole), ProbLog (De Raedt et al.), CP-logic (Vennekens, ...)
 - Will represent a simplified and unifying view as in ProbLog [De Raedt et al.]

Distribution Semantics

- probabilistic predicates F
 - define using $p:q(t_1,...,t_n)$
 - denotes that **ground** atoms $q(t_1,...,t_n)\theta$ are true with probability p
 - assume all ground probabilistic atoms to be marginally independent
- logical ones DB
 - define as usual using logic program -- WE : PATH predicate
- a similar semantics has been reinvented many times ----

Example in ProbLog

Sampling Subprograms

ABCF

 $\widehat{2}$

6

 $\left(1\right)$

3

5

(4)

- Biased coins
- Independent

Query Probability using Proofs

Prism (Sato) and ICL (Poole) avoid the disjoint problem by requiring that explanations do not overlap

Semantics ProbLog

Not really new, rediscovered many times

Intuitively, a probabilistic database

Formally, a distribution semantics [Sato 95]

Other systems, such as Sato's Prism and Poole's ICL avoid the disjoint sum problem

- assume that explanations / proofs are mutually exclusive, that is,
- P(A v B v C) = P(A) + P(B) + P(C)

Long term vision: develop an optimized probabilistic Prolog implementation in which other SRL formalisms can be compiled. (work together with Vitor Santos Costa and Bart Demoen, integration in YAP Prolog planned)

An ILLUSTRATION in LINK MINING

Some learning tasks

Following the upgrading idea

- I. explanation based learning
- 2. local pattern mining
- 3. theory compression
- 4. parameter learning

Most Likely Generalized Explanation

example $1 \rightarrow 4$

path(x,y) :- edge(x,y)
path(x,y) :- edge(x,z), path(y,z)

Generalize Explanation

Use of Generalized Explanation

Use of Generalized Explanation

0.72

- <u>(6)</u>→<u>(2)</u> 0.63
- (3)→(6) 0.40
- →2) 0.35
- 0.14 **→**(4)

reasoning by similarity / analogy

Experiments

	depth	nodes	edges	ag	ng	$_{\rm pt}$	\mathbf{pos}	neg
Alz1	4	122	259	14	15	3	182	2254
Alz2	5	658	3544	17	20	4	272	5056
Alz3	4	351	774	72	33	3	5112	27648
Alz4	5	3364	17666	130	55	6	16770	187470
Ast1	4	127	241	7	12	2	42	642
Ast2	5	381	787	11	12	2	110	902

Table 1. Graph characteristics: search depth used during graph extraction, numbers of nodes and edges, number of genes annotated resp. not annotated with the corresponding disease and number of phenotypes, number of positive and negative examples for connecting two genes and a phenotype.

Experiments

	Alz1						Ast1					
	pos(1)	pos(3)	pos(5)	pos_n	pos_a	prec	pos(1)	pos(3)	pos(5)	pos_n	pos_a	prec
Alz1	0.95	2.53	3.95	6.91	16.82	0.46	1.00	3.00	4.86	6.86	10.57	0.23
Alz2	0.84	2.24	3.60	7.37	18.65	0.42	0.86	2.86	4.71	6.86	14.56	0.22
Alz3	0.99	2.64	4.09	23.20	126.09	0.48	1.00	2.71	4.14	6.86	28.00	0.24
Alz4	0.84	2.23	3.58	7.37	18.80	0.42	0.86	2.29	3.43	5.14	28.00	0.15
Ast1	0.09	0.26	0.44	2.07	2.07	0.02	1.00	3.00	4.86	17.14	17.14	0.34
Ast2	0.08	0.23	0.38	2.00	2.00	0.01	0.86	2.57	4.29	16.57	16.57	0.20

Table 2. Averaged results over all examples learned on Alz1 resp. Ast1 and evaluated on 6 different graphs: number of positives among the first k answers for k = 1, 3, 5, number of positives returned before the first negative, absolute number of positives returned, and precision.

PEBL Contributions

- EBL in probabilistic context
- Multiple explanations: most likely one
- Reasoning by analogy: background knowledge + likelihood

2. Probabilistic Pattern Mining

Probabilistic Pattern Mining

3

6

3

(1)

(2)

6

no definition of path

3. Probabilistic Theory Compression/ Revision

- Given
 - pos / neg interactions
 - Say (green, blue) / (red, blue)
- Find small network (k links) that maximizes prob positives and minimized prob negatives

De Raedt et al. MLJ 08

Probabilistic Theory Compression

- Reduce to at most k edges (greedy approach, reusing BDDs for scoring)
- Example: Green and blue should be connected, red and blue not (all edges have probability 0.5)

4. Parameter Estimation

using least squares and gradient

- ③→① 0.72
- (6)→(2) 0.63
- ③→⑥ 0.40
- ①→② 0.35
- ③→④ 0.14

Gutmann et al. ECML 08

Parameter Estimation

using least squares and gradient

- ③→① 0.72
- (6)→② 0.63
- ③→⑥ 0.40
- (]→② 0.35
- ③→④ 0.14

Gutmann et al. ECML 08

Experiments

• For all of the settings specified, we did set up experiments that show that meaningful links can be (re)-discovered

Conclusions

Logic and relational learning toolbox (take what you need)

- rules & background knowledge
- generality & operators
- upgrading & downgrading
- graphs & relational database & logic
- learning settings
- propositionalization & aggregation
- probabilistic logics

Further Reading

Luc De Raedt

Logical and Relational Learning

Springer, 2008, 401 pages, in print.

(should be on display at the Springer booth)

Thanks to

Collaborators on previous tutorials and specific aspects of this work, esp.

 Kristian Kersting, Angelika Kimmig, Hannu Toivonen