Demo abstract

SEDiL: Software for Edit Distance Learning

Laurent Boyer - Universite de Saint-Etienne, France
Yann Esposito - Universite de Saint-Etienne, France
Amaury Habrard - Universite de Provence, France
Jose Oncina - University of Alicante, Spain
Marc Sebban - Universite de Saint-Etienne, France

Session: Demo 1
Springer Link: http://dx.doi.org/10.1007/978-3-540-87481-2_45

In this paper, we present SEDiL, a Software for Edit Distance Learning. SEDiL is an innovative prototype implementation grouping together most of the state of the art methods that aim to automatically learn the parameters of string and tree edit distances.