Demo abstractSEDiL: Software for Edit Distance LearningLaurent Boyer - Universite de Saint-Etienne, FranceYann Esposito - Universite de Saint-Etienne, France Amaury Habrard - Universite de Provence, France Jose Oncina - University of Alicante, Spain Marc Sebban - Universite de Saint-Etienne, France Session: Demo 1 Springer Link: http://dx.doi.org/10.1007/978-3-540-87481-2_45 In this paper, we present SEDiL, a Software for Edit Distance Learning. SEDiL is an innovative prototype implementation grouping together most of the state of the art methods that aim to automatically learn the parameters of string and tree edit distances. |